Kartiranje poplav na podlagi odprtokodnih podatkov daljinskega zaznavanja z učinkovitim sistemom kombiniranih pasov
DOI:
https://doi.org/10.3986/AGS.10598Ključne besede:
hitro kartiranje poplav, Sentinel-2, prilagojen normalizirani vodni indeks, ekstrakcijski indeks najvišjih poplav, kapa koeficient, pravilnost, IndonezijaPovzetek
Kartiranje poplav je ključno za načrtovanje blažitev njihovih posledic. Razpoložljivi podatki, zajeti z daljinskim zaznavanjem, nam to omogočajo. V članku razvijamo natančno metodo za hitro kartiranje poplav na podlagi satelitskih posnetkov. Posnetke Sentinel-2 smo testirali s podatki pred in po poplavi v nižinskem območju. Poplave smo zaznavali s pomočjo na novo razvitega ekstrakcijskega indeksa najvišjih poplav (FIEI) in ga primerjali s prilagojenim normaliziranim vodnim indeksom (MNDWI), ki je najpogosteje uporabljen indeks v tovrstnih raziskavah. Območja smo glede na izbor določenega praga razdelili na poplavljena in nepoplavljena. Vrednotenje natančnosti rezultatov na podlagi skupnih in kapa koeficientov je pokazalo, da je pristop FIEI natančnejši od pristopa MNDWI.
Prenosi
Literatura
Bousbih, S., Zribi, M., Pelletier, C., Gorrab, A., Lili-Chabaane, Z., Baghdadi, N., Ben Aissa, N., Mougenot, B. 2019: Soil texture estimation using radar and optical data from Sentinel-1 and Sentinel-2. Remote Sensing 11-13. DOI: https://doi.org/10.3390/rs11131520 DOI: https://doi.org/10.3390/rs11131520
Chen, Z., Luo, J., Chen, N., Xu, R., Shen, G. 2019: RFim: A real-time inundation extent model for large floodplains based on remote sensing big data and water level observations. Remote Sensing 11-13. DOI: https://doi.org/10.3390/rs11131585 DOI: https://doi.org/10.3390/rs11131585
Ettehadi Osgouei, P., Kaya, S., Sertel, E., Alganci, U. 2019: Separating built-up areas from bare land in Mediterranean cities using Sentinel-2A imagery. Remote Sensing 11-3. DOI: https://doi.org/10.3390/rs11030345 DOI: https://doi.org/10.3390/rs11030345
European space agency 2015: Sentinel-2 user handbook. European Space Agency Standard Document 1-2.
Ferk, M., Ciglič, R., Komac, B., Lóczy, D. 2021: Management of small retention ponds and their impact on flood hazard prevention in the Slovenske Gorice Hills. Acta geographica Slovenica 61-1. DOI: https://doi.org/https://doi.org/10.3986/AGS.7675 DOI: https://doi.org/10.3986/AGS.7675
Feyisa, G. L., Meilby, H., Fensholt, R., Proud, S. R. 2014: Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment 140. DOI: https://doi.org/10.1016/j.rse.2013.08.029 DOI: https://doi.org/10.1016/j.rse.2013.08.029
Fisher, A., Flood, N., Danaher, T. 2016: Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sensing of Environment 175. DOI: https://doi.org/10.1016/j.rse.2015.12.055 DOI: https://doi.org/10.1016/j.rse.2015.12.055
Gašparovič, M., Klobučar, D. 2021: Mapping floods in low-land forest using Sentinel-1 and Sentinel-2 data and an object-based approach. Forests 12-5. DOI: https://doi.org/10.3390/f12050553 DOI: https://doi.org/10.3390/f12050553
Ghofrani, Z., Sposito, V., Faggian, R. 2019: Improving flood monitoring in rural areas using remote sensing. Water Practice and Technology 14-1. DOI: https://doi.org/10.2166/wpt.2018.118 DOI: https://doi.org/10.2166/wpt.2018.118
Huang, M., Jin, S. 2020: Rapid flood mapping and evaluation with a supervised classifier and change detection in Shouguang using Sentinel-1 SAR and Sentinel-2 optical data. Remote Sensing 12-13. DOI: https://doi.org/10.3390/rs12132073 DOI: https://doi.org/10.3390/rs12132073
Kaplan, G., Avdan, U. 2017: Mapping and monitoring wetlands using Sentinel-2 satellite imagery. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences IV-4/W4. DOI: https://doi.org/10.5194/isprs-annals-IV-4-W4-271-2017 DOI: https://doi.org/10.5194/isprs-annals-IV-4-W4-271-2017
Mahmood, S., Sajjad, A., Rahman, A.-ur. 2021: Cause and damage analysis of 2010 flood disaster in district Muzaffar Garh, Pakistan. Natural Hazards 107. DOI: https://doi.org/10.1007/s11069-021-04652-6 DOI: https://doi.org/10.1007/s11069-021-04652-6
Niu, L., Kaufmann, H., Xu, G., Zhang, G., Ji, C., He, Y. 2022: Triangle Water Index (TWI): An advanced approach for more accurate detection and delineation of water surfaces in Sentinel-2 data. Remote Sensing 14-21. DOI: https://doi.org/https://doi.org/10.3390/rs14215289 DOI: https://doi.org/10.3390/rs14215289
Niwas, R., Grewal, M. S., Khichar, M. L. 2015: Practical manual on Remote Sensing , GIS and Land Use Planning. Hisar.
Nurullatifah, T. 2021: Ribuan Warga Terdampak Banjir di Jember. Internet: https://akurat.co/ribuan-warga-terdampak-banjir-di-jember (25. 1. 2023).
Pena-Regueiro, J., Sebastiá-Frasquet, M.-T., Estornell, J., Aguilar-Maldonado, J. A. 2020: Sentinel-2 application to the surface characterization of small water bodies in wetlands. Water 12-5. DOI: https://doi.org/10.3390/w12051487 DOI: https://doi.org/10.3390/w12051487
Rahman, M., Ningsheng, C., Islam, M. M., Dewan, A., Iqbal, J., Washakh, R. M. A., Shufeng, T. 2019: Flood susceptibility assessment in Bangladesh Using machine learning and multi-criteria decision analysis. Earth Systems and Environment 3. DOI: https://doi.org/10.1007/s41748-019-00123-y DOI: https://doi.org/10.1007/s41748-019-00123-y
Ryu, J., Yoon, E. J., Park, C., Lee, D. K., Jeon, S. W. 2017: A flood risk assessment model for companies and criteria for governmental decision-making to minimize hazards. Sustainability 9-11. DOI: https://doi.org/10.3390/su9112005 DOI: https://doi.org/10.3390/su9112005
Sajjad, A., Lu, J., Chen, X., Chisenga, C., Mazhar, N., Nadeem, B. 2022: Riverine flood mapping and impact assessment using remote sensing technique: A case study of Chenab flood-2014 in Multan district, Punjab, Pakistan. Natural Hazards 110. DOI: https://doi.org/https://doi.org/10.1007/s11069-021-05033-9 DOI: https://doi.org/10.1007/s11069-021-05033-9
Sarp, G., Ozcelik, M. 2017: Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey. Journal of Taibah University for Science 11-3. DOI: https://doi.org/10.1016/j.jtusci.2016.04.005 DOI: https://doi.org/10.1016/j.jtusci.2016.04.005
Sathianarayanan, M. 2018: Assessment of surface water dynamics using multiple water indices around Adama woreda, Ethiopia. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 4-5. DOI: https://doi.org/10.5194/isprs-annals-IV-5-181-2018 DOI: https://doi.org/10.5194/isprs-annals-IV-5-181-2018
Sipelgas, L., Aavaste, A., Uiboupin, R. 2021: Mapping flood extent and frequency from Sentinel-1 imagery during the extremely warm winter of 2020 in boreal floodplains and forests. Remote Sensing 13-23. DOI: https://doi.org/10.3390/rs13234949 DOI: https://doi.org/10.3390/rs13234949
Sivanpillai, R., Jacobs, K. M., Mattilio, C. M., Piskorski, E. V. 2021: Rapid flood inundation mapping by differencing water indices from pre- and post-flood Landsat images. Frontiers of Earth Science 15. DOI: https://doi.org/10.1007/s11707-020-0818-0 DOI: https://doi.org/10.1007/s11707-020-0818-0
Suwarsono, Nugroho, J. T., Wiweka. 2013: Identification of inundated area using normalized difference water index (NDWI) on lowland region of Java island. International Journal of Remote Sensing and Earth Sciences 10-2. DOI: https://doi.org/10.30536/j.ijreses.2013.v10.a1850 DOI: https://doi.org/10.30536/j.ijreses.2013.v10.a1850
Wang, Y., Colby, J. D., Mulcahy, K. A. 2002: An efficient method for mapping flood extent in a coastal floodplain using Landsat TM and DEM data. International Journal of Remote Sensing 23-18. DOI: https://doi.org/10.1080/01431160110114484 DOI: https://doi.org/10.1080/01431160110114484
Watson, P. F., Petrie, A. 2010: Method agreement analysis: A review of correct methodology. Theriogenology 73-9. DOI: https://doi.org/10.1016/j.theriogenology.2010.01.003 DOI: https://doi.org/10.1016/j.theriogenology.2010.01.003
Xu, H. 2006: Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing 27-14. DOI: https://doi.org/10.1080/01431160600589179 DOI: https://doi.org/10.1080/01431160600589179
Zhou, Y., Dong, J., Xiao, X., Xiao, T., Yang, Z., Zhao, G., Zou, Z., Qin, Y. 2017: Open surface water mapping algorithms: A comparison of water-related spectral indices and sensors. Water 9-4. DOI: https://doi.org/10.3390/w9040256Bousbih, S., Zribi, M., Pelletier, C., Gorrab, A., Lili-Chabaane, Z., Baghdadi, N., Aissa, N. Ben., Mougenot, B. 2019: Soil texture estimation using radar and optical data from Sentinel-1 and Sentinel-2. Remote Sensing. DOI: https://doi.org/10.3390/rs11131520 DOI: https://doi.org/10.3390/rs11131520
Prenosi
Objavljeno
Kako citirati
Številka
Rubrike
Licenca
Avtorske pravice (c) 2023 ZRC SAZU Anton Melik Geographical Institute
To delo je licencirano pod Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 mednarodno licenco.