Plant biodiversity of Rosa damascena fields from Bulgaria's Rose Valley
Keywords:
agriculture, conventional farming, mowing, organic farming, plant diversity, ploughing, rose fieldsAbstract
The growing human population's demand for food and organic materials has a severe impact on the environment as conventional agriculture expands, destroying habitats and wildlife. This highlights the need to balance provision security with biodiversity conservation through new agricultural practices. This study investigates how different agricultural practices affect the plant diversity found in rose fields located in Kazanlak region, Bulgaria. We compared conventional and organic farming methods, while also looking at how the management of spaces between the rose rows by mowing or ploughing affects their plant diversity. Our results show that mowing management, as opposed to ploughing, leads to greater plant diversity and a higher vegetation total cover. Additionally, organic farming practices combined with mowing management were found to support plant communities with higher diversity, compared to conventional farming under mowing. We conclude that organic farming combined with mowing management is the most beneficial practice for promoting plant diversity in Bulgarian rose fields.
Downloads
References
Bengtsson, J., Ahnström, J., & Weibull, A. C. (2005). The effects of organic agriculture on biodiversity and abundance: a meta‐analysis. Journal of applied ecology, 42(2), 261-269. https://doi.org/10.1111/j.1365-2664.2005.01005.x
Bengtsson, J., Bullock, J.M., Egoh, B., Everson, C., Everson, T., O'connor, T., O'farrell, P., Smith, H.G. & Lindborg, R. (2019). Grasslands—more important for ecosystem services than you might think. Ecosphere, 10(2), p.e02582. https://doi.org/10.1002/ecs2.2582
Borin, M., Passoni, M., Thiene, M. & Tempesta, T. (2010). Multiple functions of buffer strips in farming areas. European journal of agronomy, 32(1), 103-111. https://doi.org/10.1016/j.eja.2009.05.003
Boteva, S., Kenarova, A., Tzonev, R. & Bogoev, V. (2020). Agricultural landscapes development and its subsequent impact in terms of common agricultural policy–the case of South Western planning region in Bulgaria. Bulgarian Journal of Agricultural Science, 26(6), 1209-1216.
Chalova, V. I., Manolov, I. G., & Manolova, V. S. (2017). Challenges for commercial organic production of oil-bearing rose in Bulgaria. Biological Agriculture & Horticulture, 33(3), 183–194. https://doi.org/10.1080/01448765.2017.1315613
Chytrý, M., Tichý, L., Holt, J., & Botta-Dukát, Z. (2002). Determination of diagnostic species with statistical fidelity measures. – Journal of Vegetation Science, 13(1), 79-90. https://doi.org/10.1111/j.1654-1103.2002.tb02025.x
Cidón, C.F.; Figueiró, P.S., & Schreiber, D. (2021). Benefits of Organic Agriculture under the Perspective of the Bioeconomy: A Systematic Review. Sustainability, 13(12), 6852. https://doi.org/10.3390/su13126852
Caissard, J.C., Adrar, I., Conart, C., Paramita, S.N. & Baudino, S., (2023). Do we really know the scent of roses? Botany Letters, 170(1), 77-88.
De Vries, F. T., Thébault, E., Liiri, M., Birkhofer, K., Tsiafouli, M. A., Bjørnlund, L., Jørgensen, H. B., Brady, M. V., Christensen, S., de Ruiter, P. C., d’Hertefeldt, T., Frouz, J., Hedlund, K., Hemerik, L., Gera Hol, W. H., Hotes, S., Mortimer, S. R., Setälä, H., Sgardelis, S. P., Uteseny, K., van der Putten, W. H., Wolters, V., & Bardgett, R. D. (2013). Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences, 110(35), 14296-14301. https://doi.org/10.1073/pnas.1305198110
Dudley, N., & Alexander, S. (2017). Agriculture and biodiversity: a review. Biodiversity, 18(2–3), 45–49. https://doi.org/10.1080/14888386.2017.1351892
Haines-Young, R. (2009). Land use and biodiversity relationships. Land Use Policy, 26(1), 178-186. https://doi.org/10.1016/j.landusepol.2009.08.009
Holt, A. R., Alix, A., Thompson, A., & Maltby, L. (2016). Food production, ecosystem services and biodiversity: We can't have it all everywhere. Science of the Total Environment, 573, 1422-1429. https://doi.org/10.1016/j.scitotenv.2016.07.139
Hong, P., Schmid, B., De Laender, F., Eisenhauer, N., Zhang, X., Chen, H., Craven, D., De Boeck, H. J., Hautier, Y., Petchey, O. L., Reich, P. B., Steudel, B., Striebel, M., Thakur, M. P., & Wang, S. (2022). Biodiversity promotes ecosystem functioning despite environmental change. Ecology Letters, 25(2), 555-569. https://doi.org/10.1111/ele.13936
Hopwood, J. L., Frischie, S., May, E., & Lee-Mäder, E. (2021). Farming with Soil Life: A Handbook for Supporting Soil Invertebrates and Soil Health on Farms. Xerces Society for Invertebrate Conservation.
Hufford, M. B., Berny Mier y Teran, J. C., & Gepts, P. (2019). Crop biodiversity: an unfinished magnum opus of nature. Annual review of plant biology, 70, 727-751. https://doi.org/10.1146/annurev-arplant-042817-040240
Isbell, F. I., Polley, H. W., & Wilsey, B. J. (2009). Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecology letters, 12(5), 443-451. https://doi.org/10.1111/j.1461-0248.2009.01299.x
Isbell, F., Calcagno, V., Hector, A., Connolly, J., Harpole, W. S., Reich, P. B., Scherer-Lorenzen, M., Schmid, B., Tilman, D., van Ruijven, J., Weigelt, A., Wilsey, B. J., Zavaleta, E. S., & Loreau, M. (2011). High plant diversity is needed to maintain ecosystem services. Nature, 477(7363), 199-202. https://doi.org/10.1038/nature10282
Jackson, L. E., Pascual, U., & Hodgkin, T. (2007). Utilizing and conserving agrobiodiversity in agricultural landscapes. Agriculture, ecosystems & environment, 121(3), 196-210. https://doi.org/10.1016/j.agee.2006.12.017
Kumari, R., & Deepali, B. (2021). Biodiversity Loss: Threats and Conservation Strategies. International Journal of Pharmaceutical Sciences Review and Research, 68(1), 242-254. http://dx.doi.org/10.47583/ijpsrr.2021.v68i01.037
Kanianska, R. (2016). Agriculture and its impact on land-use, environment, and ecosystem services. In A. Almusaed (Ed.), Landscape ecology-The influences of land use and anthropogenic impacts of landscape creation (pp.1-26). InTech. http://dx.doi.org/10.5772/61905
Kovacheva, N., Rusanov, K., & Atanassov, I. (2010). Industrial Cultivation of Oil Bearing Rose and Rose Oil Production in Bulgaria During 21ST Century, Directions and Challenges. Biotechnology & Biotechnological Equipment, 24(2), 1793–1798. https://doi.org/10.2478/V10133-010-0032-4
Lal, R. (2013). Enhancing ecosystem services with no-till. Renewable agriculture and food systems, 28(2), 102-114. https://doi.org/10.1017/S1742170512000452
Lanz, B., Dietz, S., & Swanson, T. (2018). The expansion of modern agriculture and global biodiversity decline: an integrated assessment. Ecological Economics, 144, 260-277. https://doi.org/10.1016/j.ecolecon.2017.07.018
McCune, B., & Mefford, M. (2006). PC-ORD. Multivariate Analysis of Ecological Data. Version 5.32. MjM Software. Gleneden Beach, Oregon, U.S.A.
Morand S. 2010. Biodiversity: An international perspective. Rev. sci. tech. Off. int. Epiz., 2010, 29 (1), 65-72.
Muluneh, M. G. (2021). Impact of climate change on biodiversity and food security: a global perspective – a review article. Agriculture & Food Security, 10(1), 1-25. https://doi.org/10.1186/s40066-021-00318-5
Norris, K. (2008). Agriculture and biodiversity conservation: opportunity knocks. Conservation letters, 1(1), 2-11. https://doi.org/10.1111/j.1755-263X.2008.00007.x
Ortiz, A. M. D., Outhwaite, C. L., Dalin, C., & Newbold, T. (2021). A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth, 4(1), 88-101. https://doi.org/10.1016/j.oneear.2020.12.008
Raven, P. H., & Wagner, D. L. (2021). Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proceedings of the National Academy of Sciences, 118(2), e2002548117. https://doi.org/10.1073/pnas.2002548117
Reidsma, P., Tekelenburg, T., Van den Berg, M., & Alkemade, R. (2006). Impacts of land-use change on biodiversity: An assessment of agricultural biodiversity in the European Union. Agriculture, ecosystems & environment, 114(1), 86-102. https://doi.org/10.1016/j.agee.2005.11.026
Schütz, L., Wenzel, B., Rottstock, T., Dachbrodt‐Saaydeh, S., Golla, B. & Kehlenbeck, H., (2022). How to promote multifunctionality of vegetated strips in arable farming: A qualitative approach for Germany. Ecosphere, 13(9), e4229. https://doi.org/10.1002/ecs2.4229
Smith, A.L., Barrett, R.L. & Milner, R.N. (2018). Annual mowing maintains plant diversity in threatened temperate grasslands. Applied Vegetation Science, 21(2), 207-218. https://doi.org/10.1111/avsc.12365
Tichý, L. (2002). JUICE, software for vegetation classification. Journal of Vegetation Science, 13(3), 451–453. https://doi.org/10.1111/j.1654-1103.2002.tb02069.x
Todorova, M., Dobreva, A., Petkova, N., Grozeva, N., Gerdzhikova, M. & Veleva, P., (2022). Organic vs conventional farming of oil-bearing rose: Effect on essential oil and antioxidant activity. BioRisk, 17, 271-285.
Tscharntke, T., Clough, Y., Wanger, T. C., Jackson, L., Motzke, I., Perfecto, I., Vandermeer, J., & Whitbread, A. (2012). Global food security, biodiversity conservation and the future of agricultural intensification. Biological conservation, 151(1), 53-59. https://doi.org/10.1016/j.biocon.2012.01.068
Tscharntke, T., Grass, I., Wanger, T.C., Westphal, C. & Batáry, P. (2021). Beyond organic farming–harnessing biodiversity-friendly landscapes. Trends in ecology & evolution, 36(10), 919-930. https://doi.org/10.1016/j.tree.2021.06.010
Tsiafouli, M. A., Thébault, E., Sgardelis, S. P., De Ruiter, P. C., Van Der Putten, W. H., Birkhofer, K., Hemerik, L., de Vries, F. T., Bardgett, R. D., Brady, M. V., Bjornlund, L., Jørgensen, H. B., Christensen, S., D’ Hertefeldt, T., Hotes, S., Gera Hol, W. H., Frouz, J., Liiri, M., Mortimer, S. R., Setälä, H., Tzanopoulos, J., Uteseny, K., Pižl, V., Stary, J., Wolters, V., & Hedlund, K. (2015). Intensive agriculture reduces soil biodiversity across Europe. Global change biology, 21(2), 973-985. https://doi.org/10.1111/gcb.12752
Tuck, S.L., Winqvist, C., Mota, F., Ahnström, J., Turnbull, L.A., Bengtsson, J. (2014). Landuse intensity and the effects of organic farming on biodiversity: a hierarchical metaanalysis. Journal of Applied Ecology, 51(3), 746–755. https://doi.org/10.1111/1365-2664.12219
Turnbull, L. A., Isbell, F., Purves, D. W., Loreau, M., Hector, A. (2016). Understanding the value of plant diversity for ecosystem functioning through niche theory. Proceedings of the Royal Society B: Biological Sciences, 283(1844), 20160536. https://doi.org/10.1098/rspb.2016.0536
Whitton, J., & Rajakaruna, N. (2001). Plant biodiversity, overview. In S. A. Levin (Ed.), Encyclopedia of Biodiversity (pp. 621-630). Elsevier. https://doi.org/10.1016/B0-12-226865-2/00341-2
Zhang, W., Dulloo, E., Kennedy, G., Bailey, A., Sandhu, H., & Nkonya, E. (2019). Biodiversity and ecosystem services. In C. Campanhola, & S. Pandey (Eds.), Sustainable Food and Agriculture (pp. 137-152). Academic Press. https://doi.org/10.1016/B978-0-12-812134-4.00008-X
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 ZRC-SAZU
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors guarantee that the work is their own original creation and does not infringe any statutory or common-law copyright or any proprietary right of any third party. In case of claims by third parties, authors commit their self to defend the interests of the publisher, and shall cover any potential costs.
More in: Submission chapter