Screening of bacteria in Yarık Sinkhole, Antalya, Turkey for carbonate dissolution, biomineralization and biotechnological potentials
DOI:
https://doi.org/10.3986/ac.v52i1.10383Keywords:
cave bacteria, non-ureolytic bacteria, carbonate dissolution, carbonate precipitation, polyketide synthase, nonribosomal pšeštide synthetaseAbstract
Abiotic and biotic factors, especially microorganisms, play a role in the development of cave formations and the existence of unique characteristics of each cave. Due to the ecological conditions that characterize the cave environments, highly specialized microorganisms that are the main source of diverse bioactive compounds, inhabit these environments. The aim of this study is to determine the role and biotechnological potential of the bacteria isolated from Yarık Sinkhole located in Antalya (Turkey) by screening their ability to induce the CaCO3 precipitation, to hydrolyze urea, to induce calcite dissolution, and screening their possession of NRPS/PKS gene clusters. The most prevalent phylum is the Bacillota (synonym Firmicutes) (75.7 %), while the dominant species is Bacillus pumilus (33 %). All the isolates showed crystal formation on B4 agar medium, and the Energy dispersive X-Ray spectroscopy (EDS) analyses showed that the crystals are predominately composed of calcium, carbon and oxygen. Ninety-six (96 %) of our isolates have negative ureolytic activity. According to this result and having the ability to induce the CaCO3 precipitation, bacteria in this environment use other biosynthesis pathways than urea hydrolysis. MgCO3 and CaCO3 were dissolved by 61 % and 59 % of the isolates, respectively. In addition, 5.9 % and 53.7 % of the isolates showed the possession of PKS and NRPS genes, respectively. This result reveals that our isolates have high industrial and biotechnological potential. They may constitute good candidates for further biotechnological applications such as construction of bio-concretes, bioremediation, soil fertility, and production of biologically active secondary metabolites.
Downloads
References
Aleti, G., Sessitsch, A., & G. Brader, 2015: Genome mining: prediction of lipopeptides and polyketides from Bacillus and related Firmicutes.- Computational and Structural Biotechnology Journal, 13, 192-203. https://doi.org/10.1016/j.csbj.2015.03.003
Amos, G. C., Borsetto, C., Laskaris, P., Krsek, M., Berry, A. E., Newsham, K. K., Calvo-Bado, L., Pearce, D.A., Vallin, C. & E.M. Wellington, 2015: Designing and implementing an assay for the detection of rare and Divergent NRPS and PKS Clones in European, Antarctic and Cuban soils.- PloS one, 10, 9, e0138327. https://doi.org/10.1371/journal.pone.0138327
Banks, E.D., Nicholas, M.T., Gulley, J., Lubbers, B.R., Giarrizo, J.G., Bullen, H.A., Hoehler, T.M. & A.B. Hazel, 2010: Bacterial calcium carbonate precipitation in cave environments: A function of calcium homeostasis.- Geomicrobiology Journal, 646, 27, 5, 444-454.
https://doi.org/10.1080/01490450903485136
Bansal, R., Dhami, N. K., Mukherjee, A. & M.S. Reddy, 2016: Biocalcification by halophilic bacteria for remediation of concrete structures in marine environment.- Journal of Industrial Microbiology and Biotechnology, 43, 11, 1497-1505. https://doi.org/10.1007/s10295-016-1835-6
Barton, H.A. & V. Jurado, 2007: What’s up down there? Microbial diversity in caves.- Microbe, 2, 132–138.
Baskar, S., Baskar, R., Lee, N. & P.K. Theophilus, 2009: Speleothems from Mawsmai and Krem Phyllut caves, Meghalaya, India: some evidences on biogenic activities.- Environmental Geology, 57, 5, 1169-1186. https://doi.org/10.1007/s00254-008-1413-y
Bauer, M.A., Kainz, K., Carmona-Gutierrez, D. & F. Madeo, 2018: Microbial wars: competition in ecological niches and within the microbiome.- Microbial Cell, 5, 215–219.
https://doi: 10.15698/mic2018.05.628
Boquet, E., Boronate, A. & A. Ramos-Cormenzana, 1973: Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon.- Nature, 246,527–529. https://doi.org/10.1038/246527a0
Bukelskis, D., Dabkeviciene, D., Lukoseviciute, L., Bucelis, A., Kriaučiūnas, I., Lebedeva, J. & N. Kuisiene, 2019: Screening and transcriptional analysis of polyketide synthases and non-ribosomal peptide synthetases in bacterial strains from Krubera–Voronja Cave.- Frontiers in Microbiology, 10, 2149. https://doi.org/10.3389/fmicb.2019.02149
Cacchio, P. & M. Del Gallo, 2019: A novel approach to isolation and screening of calcifying bacteria for biotechnological applications.- Geosciences, 9, 11, 479. https://doi.org/10.3390/geosciences9110479
Cacchio, P., Contento, R., Ercole, C., Cappuccio, G., Martinez, M. P. & A. Lepidi, 2004: Involvement of microorganisms in the formation of carbonate speleothems in the Cervo Cave (L'Aquila-Italy).- Geomicrobiology Journal, 21, 8, 497-509. https://doi.org/10.1080/01490450490888109
Cacchio, P., Ercole, C., Cappuccio, G. & A. Lepidi, 2003: Calcium carbonate precipitation by bacterial strains isolated from a limestone cave and from a loamy soil.- Geomicrobiology Journal, 20, 2, 85-98. https://doi.org/10.1080/01490450303883
Canaveras, J.C., Sanchez-Moral, S., Soler, V. & C. Saiz-Jimenez, 2001: Microorganisms and microbially induced fabrics in cave walls.- Geomicrobiology Journal, v.18, p. 223–240. https://doi.org/10.1080/01490450152467769
Carrow, R.N., 2019: Best management practices for saline and sodic turfgrass soils: assessment and reclamation.- CRC Press. https://doi.org/10.2136/vzj2012.0181br
Cheeptham, N., 2013: Advances and challenges in studying cave microbial diversity.- In Cave Microbiomes: A Novel Resource for Drug Discovery, pp. 1-34, Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5206-5_1
Choi, S., Park, S., Park, M., Kim, Y., Lee, K.M., Lee, O.M. & H.J. Son, 2021: Characterization of a novel CaCO3-forming alkali-tolerant Rhodococcus erythreus S26 as a filling agent for repairing concrete cracks.- Molecules, 26, 10, 2967. https://doi.org/10.3390/molecules26102967
Çandiroğlu, B. & N.D. Güngör, 2020: The biotechnological potentials of bacteria isolated from Parsık Cave, Turkey: Measuring the enzyme profiles, antibiotic resistance and antimicrobial activity in bacteria.- Johnson Matthey Technology Review, 64, 4, 466-479. https://doi.org/10.1595/205651320X15923194903811
De los Ríos, A., Bustillo, M. A., Ascaso, C. & M.D.R. Carvalho, 2011: Bioconstructions in ochreous speleothems from lava tubes on Terceira Island (Azores).- Sedimentary Geology, 236, 1-2, 117-128. https://doi.org/10.1016/j.sedgeo.2010.12.012
Dhami, N.K., Reddy, M.S. & A. Mukherjee, 2013: Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites.- Journal of Microbiology and Biotechnology, 23, 5, 707-714. https://doi.org/10.4014/jmb.1212.11087
Dupraz, C., Visscher, P.T., Baumgartner, L.K. & R.P Reid, 2004: Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas).- Sedimentology, 51, 745–765. https://doi.org/10.1111/j.1365-3091.2004.00649.x
Ercole, C., Bozzelli, P., Altieri, F., Cacchio, P. & M. Del Gallo, 2012: Calcium carbonate mineralization: involvement of extracellular polymeric materials isolated from calcifying bacteria.- Microscopy and Microanalysis, 18, 4, 829-839. DOI: https://doi.org/10.1017/S1431927612000426
Ercole, C., Cacchio, P., Botta, A.L., Centi, V. & A. Lepidi, 2007: Bacterially induced mineralization of calcium carbonate: the role of exopolysaccharides and capsular polysaccharides.- Microscopy and Microanalysis, 13, 1, 42-50. https://doi.org/10.1017/S1431927607070122
Farhadi, S. & S. Ziadloo, 2020: Self-Healing Microbial Concrete-A Review.- Materials Science Forum, Vol. 990, pp. 8-12, Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.990.8
Fujita, Y., Ferris, F.G., Lawson, R.D., Colwell, F.S. & R.W. Smith, 2000: Subscribed content calcium carbonate precipitation by ureolytic subsurface bacteria.- Geomicrobiology Journal, 17, 305–318. https://doi.org/10.1080/782198884
Ganendra, G., De Muynck, W., Ho, A., Arvaniti, E.C., Hosseinkhani, B., Ramos, J. A., Rahier, H. & N. Boon, 2014: Formate oxidation-driven calcium carbonate precipitation by Methylocystis parvus OBBP.-Applied and Environmental Microbiology, 80, 15, 4659-4667. https://doi.org/10.1128/AEM.01349-14
Hamedi, J., Kafshnouchi, M. & M. Ranjbaran, 2019: A study on actinobacterial diversity of Hampoeil cave and screening of their biological activities.- Saudi Journal of Biological Sciences, 26, 7, 1587-1595. https://doi.org/10.1016/j.sjbs.2018.10.010
Hammes, F., Seka, A., de Knijf, S. & W. Verstraete, 2003: A novel approach to calcium removal from calcium-rich industrial wastewater.- Water Research, 37, 3, 699-704. https://doi.org/10.1016/S0043-1354(02)00308-1
Jones, B., 2001: Microbial activity in caves — a geological perspective.- Geomicrobiology Journal, v. 18, p. 345–358. https://doi.org/10.1080/01490450152467831
Kenawy, A., Dailin, D.J., Abo-Zaid, G.A., Abd Malek, R., Ambehabati, K.K., Zakaria, K.H.N., Sayyed, R.Z. & H.A. El Enshasy, 2019: Biosynthesis of antibiotics by PGPR and their roles in biocontrol of plant diseases.- In Plant Growth Promoting Rhizobacteria for Sustainable Stress Management, pp. 1-35, Springer, Singapore. https://doi.org/10.1007/978-981-13-6986-5_1
Lee, Y.S., Kim, H.J. & W. Park, 2017: Non-ureolytic calcium carbonate precipitation by Lysinibacillus sp. YS11 isolated from the rhizosphere of Miscanthus sacchariflorus.- Journal of Microbiology, 55, 6, 440-447.
Li, W., Rokni-Zadeh, H., De Vleeschouwer, M., Ghequire, M G., Sinnaeve, D., Xie, G. L., Rozenski J., Madder, A., Martins J.C., & R. De Mot, 2013: The antimicrobial compound xantholysin defines a new group of Pseudomonas cyclic lipopeptides.- PloS one, 8, 5, e62946. https://doi.org/10.1371/journal.pone.0062946
Lukoseviciute, L., Lebedeva, J., & N. Kuisiene, 2021: Diversity of polyketide synthases and nonribosomal peptide synthetases revealed through metagenomic analysis of a deep oligotrophic cave.- Microbial Ecology, 81, 1, 110-121. https://doi.org/10.1007/s00248-020-01554-1
Marvasi, M., Gallagher, K.L., Martinez, L.C., Molina Pagan W.C., Rodríguez Santiago, R.E., Castilloveitía Vega, G. & P.T. Visscher, 2012: Importance of B4 medium in determining organomineralization potential of bacterial environmental isolates.- Geomicrobiology Journal, 29, 10, 916-924. https://doi.org/10.1080/01490451.2011.636145
Meier, A., Kastner, A., Harries, D., Wierzbicka-Wieczorek, M., Majzlan, J., Büchel, G. & E. Kothe, 2017: Calcium carbonates: induced biomineralization with controlled micromorphology.-Biogeosciences. 14, 21, 4867-4878. https://doi.org/10.5194/bg-14-4867-2017
Miller, A.Z., Garcia-Sanchez, A.M., Martin-Sanchez, P.M., Pereira, M.F.C., Spangenberg, J.E., Jurado, V., Dionisio, A., Afonso, M.J., Chaminé, H.I., Hermosin, B. & C. Saiz-Jimenez, 2018: Origin of abundant moonmilk deposits in a subsurface granitic environment.- Sedimentology, 65, 1482-1503. https://doi.org/10.1111/sed.12431
Northup, E., Kathleen, H. & D. Lavoie, 2001: Geomicrobiology of caves: a review.- Geomicrobiology Journal, 18, 3, 199-222. https://doi.org/10.1080/01490450152467750
Olishevska, S., Nickzad, A. & E. Déziel, 2019: Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens.- Applied Microbiology and Biotechnology, 103, 3, 1189-1215. https://doi.org/10.1007/s00253-018-9541-0
Omoregie, A.I, Ong D.E.L. & P.M. Nissom, 2018: Assessing ureolytic bacteria with calcifying abilities isolated from limestone caves for biocalcification.- Letters in Applied Microbiology, 68, 2, 173-181. https://doi.org/10.1111/lam.13103
Orhan, F., Demirci, A. & D. Yanmis, 2017: CaCO3 and MgCO3 dissolving halophilic bacteria.- Geomicrobiology Journal, 34, 9, 804-810. https://doi.org/10.1080/01490451.2016.1273410
Ortega-Villamagua, E., Gudiño-Gomezjurado, M. & A. Palma-Cando, 2020: Microbiologically induced carbonate precipitation in the restoration and conservation of cultural heritage materials.- Molecules, 25, 23, 5499. https://doi.org/10.3390/molecules25235499
Parida, A. K. & A.B. Das, 2005: Salt tolerance and salinity effects on plants: a review.- Ecotoxicology and Environmental Safety, 60, 3, 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
Qian, C. X., Wang, R. X., Cheng, L. & J.Y. Wang, 2010: Theory of microbial carbonate precipitation and its application in restoration of cement-based materials defects.- Chinese Journal of Chemistry, 28, 5, 847–857. https://doi.org/10.1002/cjoc.201090156
Raaijmakers, J.M., De Bruijn, I., Nybroe, O. & M. Ongena, 2010: Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics.- FEMS Microbiology Reviews, 34, 6, 1037-1062. https://doi.org/10.1111/j.1574-6976.2010.00221.x
Rajasekar, A., Wilkinson, S. & C.K. Moy, 2021: MICP as a potential sustainable technique to treat or entrap contaminants in the natural environment: A review.- Environmental Science and Ecotechnology, 100096. https://doi.org/10.1016/j.ese.2021.100096
Reddy, P.Y., Ramesh, B. & L.P. Kumar, 2020: Influence of bacteria in self healing of concrete-a review.- Materials Today: Proceedings, 33, 4212-4218. https://doi.org/10.1016/j.matpr.2020.07.233
Reeburgh, W., 2007: Oceanic methane biogeochemistry.- Chemical Reviews, 107, 2, 486-513. https://doi.org/10.1021/cr050362v
Saravanan, A., Kumar, P.S., Vardhan, K.H., Jeevanantham, S., Karishma, S.B., Yaashikaa, P.R. & P. Vellaichamy, 2020: A review on systematic approach for microbial enhanced oil recovery technologies: Opportunities and challenges.- Journal of Cleaner Production, 258, 120777. https://doi.org/10.1016/j.jclepro.2020.120777
Sarda, D., Choonia, H.S., Sarode, D.D. & S.S Lele, 2009: Biocalcification by Bacillus pasteurii urease: a novel application.- Journal of Industrial Microbiology and Biotechnology, 36, 8, 1111-1115. https://doi.org/10.1007/s10295-009-0581-4
Seifan, M., Samani A.K. & A. Berenjian, 2016: Induced calcium carbonate precipitation using Bacillus species.- Applied Microbiology and Biotechnology, 100, 23, 9895-9906. https://doi.org/10.1007/s00253-016-7701-7
Seifan, M., Sarabadani, Z. & A. Berenjian, 2020: Microbially induced calcium carbonate precipitation to design a new type of bio self-healing dental composite.- Applied Microbiology and Biotechnology, 104, 5, 2029-2037. https://doi.org/10.1007/s00253-019-10345-9
Su F. & Y.Y. Yang, 2020: Microbially induced carbonate precipitation via methanogenesis pathway by a microbial consortium enriched from activated anaerobic sludge.- Journal of Applied Microbiology, 131, 1, 236-256. https://doi.org/10.1111/jam.14930
Su, Y., Qian, C., Rui, Y., & J. Feng, 2021: Exploring the coupled mechanism of fibers and bacteria on self-healing concrete from bacterial extracellular polymeric substances (EPS).- Cement and Concrete Composites, 116, 103896. https://doi.org/10.1016/j.cemconcomp.2020.103896
Sukhanova, E., Zimens, E., Kaluzhnaya, O., Parfenova, V. & O. Belykh, 2018: Epilithic biofilms in Lake Baikal: screening and diversity of PKS and NRPS genes in the genomes of heterotrophic bacteria.- Polish Journal of Microbiology, 67, 4, 501. https://doi.org/10.21307/pjm-2018-060
Tambadou, F., Lanneluc, I., Sablé, S., Klein, G. L., Doghri, I., Sopéna, V., Didelot, S., Barthélémy, C., Thiéry, V. & R. Chevrot, 2014: Novel nonribosomal peptide synthetase (NRPS) genes sequenced from intertidal mudflat bacteria.- FEMS Microbiology Letters, 357, 2, 123-130. https://doi.org/10.1111/1574-6968.12532
Teodosiu, G. & M. Enache, 2019: Biotechnological potential of halophilic archaea isolated from Romanian extreme habitats.- Studia Universitatis Babes-Bolyai, Biologia, 64, 1.
Tourney, J. & B.T. Ngwenya, 2009: Bacterial extracellular polymeric substances (EPS) mediate CaCO3 morphology and polymorph.- Chemical Geology, 262, 138-146. https://doi.org/10.1016/j.chemgeo.2009.01.006
Turchyn, A.V., Bradbury, H.J., Walker, K. & X. Sun, 2021: Controls on the precipitation of carbonate minerals within marine sediments.- Frontiers in Earth Science, 9, 57. https://doi.org/10.3389/feart.2021.618311
Tyagi, B., Gupta, B. & I.S. Thakur, 2020: Biosorption of Cr (VI) from aqueous solution by extracellular polymeric substances (EPS) produced by Parapedobacter sp. ISTM3 strain isolated from Mawsmai cave, Meghalaya, India.- Environmental Research, 191, 110064. https://doi.org/10.1016/j.envres.2020.110064
Van Paassen, L.A., Daza, C.M., Staal, M., Sorokin, D.Y., Van Der Zon, W. & M.C. Van Loosdrecht, 2010: Potential soil reinforcement by biological denitrification.- Ecological Engineering, 36, 168–175. https://doi.org/10.1016/j.ecoleng.2009.03.026
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors guarantee that the work is their own original creation and does not infringe any statutory or common-law copyright or any proprietary right of any third party. In case of claims by third parties, authors commit their self to defend the interests of the publisher, and shall cover any potential costs.
More in: Submission chapter