Prostorski sistem za podporo odločanju pri preprečevanje prometnih nesreč v različnih vremenskih razmerah

Avtorji

  • Danijel Ivajnšič University of Maribor, Faculty of Arts, Maribor, Slovenia; University of Maribor, Faculty of Natural Sciences and Mathematics, Maribor, Slovenia https://orcid.org/0000-0003-4419-5295
  • David Pintarič University of Maribor, Faculty of arts, Maribor, Slovenia https://orcid.org/0000-0002-6021-9851
  • Veno Jaša Grujić University of Maribor, Faculty of Education, Maribor, Slovenia; University of Maribor, Faculty of Natural Sciences and Mathematics, Maribor, Slovenia
  • Igor Žiberna University of Maribor, Faculty of Arts, Maribor, Slovenia

DOI:

https://doi.org/10.3986/AGS.9415

Ključne besede:

GIS, mobilna aplikacija, prostorske podatkovne baze, prostorski vzorci, prometna varnost

Povzetek

Vremenske razmere so pomemben dejavnik in soustvarjalec prostorsko-časovnih vzorcev prometnih nesreč. Kljub veliki uporabni vrednosti podatki o prostorskem odtisu prometnih nesreč niso del programske podpore voznikov v sodobnih komercialnih ali odprtokodnih navigacijskih sistemih. Na podlagi baze 11-letnih podatkov o prometnih nesrečah v Sloveniji smo ugotovili, da različne vremenske razmere oblikujejo različne prostorske vzorce nevarnih cestnih odsekov. Potencialno nevarne cestne odseke smo vključili v mobilni prostorski sistem za podporo odločanju (SLOCrashInfo), ki voznike opozori, ko vstopajo ali zapuščajo nevarna območja cestnega omrežja. Pričakujemo, da se bo s tem sistemom povečala varnost v cestnem prometu.

Prenosi

Podatki o prenosih še niso na voljo.

Literatura

Aguero-Valverde, J., Jovanis, P. P. 2006: Spatial analysis of fatal and injury crashes in Pennsylvania. Accident Analysis & Prevention 38-3. DOI: https://doi.org/10.1016/j.aap.2005.12.006

Anderson, T. K. 2009: Kernel density estimation and K-means clustering to profile road accident hotspots. Accident Analysis Prevention 41-3. DOI: https://doi.org/10.1016/j.aap.2008.12.014

Bailey, T. C., Gatrell, A. C. 1995: Interactive Spatial Data Analysis. England.

Bergel-Hayat, R., Debbarh, M., Antoniou, C., Yannis, G. 2013: Explaining the road accident risk: Weather effects. Accident Analysis and Prevention 60. DOI: https://doi.org/10.1016/j.aap.2013.03.006

Black, W. R. 1991: Highway accidents: A spatial and temporal analysis. Transportation Research Record 1318.

Brijs, T., Karlis, D., Wets, G. 2008: Studying the effect of weather conditions on daily crash counts using a discrete time series model. Accident Analysis and Prevention 40-3. DOI: https://doi.org/10.1016/j.aap.2008.01.001

Brodsky, H., Hakkert, A. S. 1988: Risk of road accident in rainy weather. Accident Analysis and Prevention 20-3. DOI: https://doi.org/10.1016/0001-4575(88)90001-2

Castillo-Manzano, J. I., Castro-Nuño, M., Fageda, X. 2016: Exploring the relationship between truck load capacity and traffic accidents in the European Union. Transportation Research Part E: Logistics and Transportation Review 88. DOI: https://doi.org/10.1016/j.tre.2016.02.003

Colino-Rabanal, V. J., Peris, S. J. 2016: Wildlife road kills: improving knowledge about ungulate distributions? Hystrix – the Italian Journal of Mammology 27-2. DOI: https://doi.org/10.4404/hystrix-27.2-11279

Delmelle, E. C., Thill, J. C. 2008: Urban bicyclists: A spatial analysis of adult and youth traffic hazard intensity. Transportation Research Record: Journal of the Transportation Research Board 2074-1. DOI: https://doi.org/10.3141/2074-04

Eisenberg, D. 2004: The mixed effects of precipitation on traffic crashes. Accident Analysis and Prevention 36-4. DOI: https://doi.org/10.1016/S0001-4575(03)00085-X

El-Said, M. Z. M., Soon, J. T., Eng Hie, A. T., Nurul Amirah 'Atiqah Binti, M. 'A. P., Yok Hoe. Y., Abdul Rahman, E. K. 2019: Spatial analysis of road traffic accident hotspots: evaluation and validation of recent approaches using road safety audit. Journal of Transportation Safety & Security. DOI: https://doi.org/10.1080/19439962.2019.1658673

Erdogan, S., Yilmaz, I., Baybura, T., Gullu, M. 2008: Geographical information systems aided traffic accident analysis system case study: city of Afyonkarahisar. Accident Analysis and Prevention 40-1. DOI: https://doi.org/10.1016/j.aap.2007.05.004

Etehad, H., Yousefzadeh-Chabok, S., Davoudi-Kiakalaye, A., Moghadam Dehnaadi, A., Hemati, H., Mohtasham-Amiri, Z. 2015: Impact of road traffic accidents on the elderly. Archives of Gerontology and Geriatrics 61-3. DOI: http://doi. org/10.1016/j.archger.2015.08.008

Fridström, L., Ifver, J., Ingebrigtsen, S., Kulmala, R., Thomsen, L. K. 1995: Measuring the contribution of randomness, exposure, weather, and daylight to the variation in road accident counts. Accident Analysis and Prevention 27-1. DOI: https://doi.org/10.1016/0001-4575(94)E0023-E

Global status report on road safety 2018. Geneva. Internet: https://www.who.int/publications/i/item/9789241565684 (2. 4. 2021).

Goniewicz, K., Goniewicz, M., Pawłowski, W., Fiedor, P. 2016: Road accident rates: strategies and programmes for improving road traffic safety. European Journal of Trauma and Emergency Surgery 42. DOI: https://doi.org/10.1007/s00068-015-0544-6

Grande, Z., Castillo, E., Mora, E., Lo, H. K. 2017: Highway and road probabilistic safety assessment based on Bayesian network models. Computer‐Aided Civil and Infrastructure Engineering 32-5. DOI: https://doi.org/10.1111/mice.12248

Hermans, E., Wets, G., Van Den Bossche, F. 2006: Frequency and severity of Belgian road traffic accidents studied by state-space methods. Joural of Transportation and Statistics 9-1. Internet: https://www.bts.gov/archive/publications/journal_of_transportation_and_statistics/volume_09_number_01/paper_06/index (2. 4. 2021).

Internet 1: www.dacota-project.eu (10. 12. 2020).

Internet 2: https://egp.gu.gov.si/egp/ (10. 12. 2020).

Internet 3: https://www.policija.si/o-slovenski-policiji/statistika/prometna-varnost (10. 12. 2020).

Internet 4: https://podatki.gov.si/dataset/pldp-karte-prometnih-obremenitev (10. 12. 2020).

Krisp, J. M., Durot, S. 2007: Segmentation of lines based on point densities – An optimisation of wildlife warning sign placement in southern Finland. Accident Analysis and Prevention 39-1. DOI: https://doi.org/10.1016/j.aap.2006.06.002

Nagata, T., Uno, H., Perry, M. J. 2010: Clinical consequences of road traffic injuries among the elderly in Japan. BMC Public Health 10-1. DOI: https://doi.org/10.1186/1471-2458-10-375

O’Sullivan, D., Unwin, D. J. 2002: Geographic Information Analysis. Hoboken.

Okabe, A., Okunuki, K-I., Shoiode, S. 2006: The SaNET toolbox: New Methods for Network Spatial analysis. Transactions in GIS 10-4. DOI: https://doi.org/10.1111/j.1467-9671.2006.01011.x

Okabe, A., Satoh, T., Sugihara, K. 2009: A kernel density estimation method for networks, its computational method and GIS-based tool. International Journal of Geographical Information Science 23-1. DOI: https://doi.org/10.1080/13658810802475491

Perrels, A., Votsis, A., Nurmi, V., Pilli-Sihvoa, K. 2015: Weather Conditions, Weather Information and Car Crashes. ISPRS International Journal of Geo-Information 4-4. DOI: https://doi.org/10.3390/ijgi4042681

Pulugurtha, S. S., Krishnakumar, V. K., Nambisan, S. S. 2007: New methods to identify and rank high pedestrian crash zones: An illustration. Accident Analysis and Prevention 39-4. DOI: https://doi.org/10.1016/j.aap.2006.12.001

Romano, B., Jiang, Z. 2017: Visualizing traffic accident hotspots based on spatial-temporal network kernel density estimation. Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Los Angeles. DOI: https://doi.org/10.1145/3139958.3139981

Savaş Durduran S. 2010: A decision making system to automatic recognize of traffic accidents on the basis of a GIS platform. Expert Systems with Applications 37-12. DOI: https://doi.org/10.1016/j.eswa.2010.04.068

Uchida, N., Takeuchi, S., Ishida, T., Shibata, Y. 2017: Mobile Traffic Accident Prevention System Based on Chronological Changes of Wireless Signals and Sensors. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications 8-3. DOI: https://doi.org/10.22667/JOWUA.2017.09.30.057

Xie, Z., Yan, J. 2008: Kernel Density Estimation of traffic accidents in a network space. Computers, Environment and Urban Systems 32-5. DOI: https://doi.org/10.1016/j.compenvurbsys.2008.05.001

Yannis, G., Karlaftis, M. G. 2010: Weather Effects on Daily Traffic Accidents and Fatalities: Time Series Count Data approach. Proceedings of the Transportation Research Board 89th annual Meeting. Washington.

Objavljeno

2021-07-28

Kako citirati

Ivajnšič, D. ., Pintarič, D. ., Grujić, V. J., Žiberna, I. . 2021: Prostorski sistem za podporo odločanju pri preprečevanje prometnih nesreč v različnih vremenskih razmerah. Acta geographica Slovenica 61-1. https://doi.org/10.3986/AGS.9415