Thickness and geodetic mass balance changes for the Triglav Glacier (southeastern Alps) from 1952 to 2016
DOI:
https://doi.org/10.3986/AGS.7673Keywords:
climate change, glacier thickness, glacier volume, geodetic mass balance, Triglav Glacier, SloveniaAbstract
Various geodetic and lidar measurements performed on the Triglav Glacier (Julian Alps, Slovenia) make it possible to study not only the extent of the glacier but also changes in its thickness and volume. These measurements also make it possible to calculate the geodetic mass balance of the glacier. Thickness and volume changes were calculated using glacier area measurements from 1952, 1975, and 1992, and annually between 1999 and 2016. The mean thickness decreased from 39.2m in 1952 to 2.45m in 2012. The maximum thickness decreased from 48.3 m in 1952 to 5.2 m in 2007. The mean specific mass balance was calculated for the area of 1 hectare that the glacier covered in 2016. From 1952 to 2016, the annual specific mass balance was −0.45m w.e.a−1.
Downloads
References
Abermann, J., Lambrecht, A., Fischer, A., Kuhn, M. 2009: Quantifying changes and trends in glacier area and volume in the Austrian Otztal Alps (1969–1997–2006). The Cryosphere 3-2. DOI: https://doi.org/10.5194/tc-3-205-2009
Benn, D. I., Evans, D. J. A. 2010: Glaciers and glaciation. London, New York.
Brown, J., Harper, J., Humphrey, N. 2010: Cirque glacier sensitivity to 21st century warming: Sperry Glacier, Rocky Mountains, USA. Global and Planetary Change 74-2. DOI: https://doi.org/10.1016/j.gloplacha.2010.09.001
Carturan, L., Baroni, C., Brunetti, M., Carton, A., Fontana, G. D., Salvatore, M. C., Zanoner, T., Zuecco, G. 2016: Analysis of the mass balance time series of glaciers in the Italian Alps. The Cryosphere 10-2. DOI: https://doi.org/10.5194/tc-10-695-2016
Colucci, R. R., Guglielmin, M. 2015: Precipitation–temperature changes and evolution of a small glacier in the southeastern European Alps during the last 90 years. International Journal of Climatology 35-10. DOI: https://doi.org/10.1002/joc.4172
DeBeer, C. M., Sharp, M. J. 2009: Topographic influences on recent changes of very small glaciers in the Monashee Mountains, British Columbia, Canada. Journal of Glaciology 55-192. DOI: https://doi.org/10.3189/002214309789470851
Del Gobbo, C., Colucci, R. R., Forte, E., Triglav Čekada, M., Zorn, M. 2016: The Triglav glacier (South-Eastern Alps, Slovenia): Volume estimation, internal characterization and 2000–2013 temporal evolution by means of ground penetrating radar measurements. Pure and Applied Geophysics 173. DOI: https://doi.org/10.1007/s00024-016-1348-2
Fischer, A. 2011: Comparison of direct and geodetic mass balances on a multi-annual time scale. The Cryosphere 5-1. DOI: https://doi.org/10.5194/tc-5-107-2011
Fischer, M., Huss, M., Hoelzle, M. 2015: Surface elevation and mass changes of all Swiss glaciers 1980–2010. The Cryosphere 9-2. DOI: https://doi.org/10.5194/tc-9-525-2015
Gabrovec, M. 2002a: The Triglav Glacier. High-mountain lakes in the Eastern part of the Julian Alps. Ljubljana.
Gabrovec, M. 2002b: Spremembe prostornine Triglavskega ledenika. Dela 18. DOI: https://doi.org/10.4312/dela.18.133-141
Gabrovec, M. 2008: Il ghiacciaio del Triglav (Slovenia) – The Triglav Glacier. Ghiacciai montani e cambiamenti climatici nell' ultimo secolo – Mountain Glaciers and Climate Changes in the Last Century. Milano.
Gabrovec, M., Hrvatin, M., Komac, B., Ortar, J., Pavšek, M., Topole, M., Triglav Čekada, M., Zorn, M. 2014: Triglavski ledenik. Geografija Slovenije 30. Ljubljana. DOI: https://doi.org/10.3986/9789610503644
Gabrovec, M., Komac, B., Pavšek, M., Triglav Čekada, M. 2009: Triglavski ledenik kot pokazatelj podnebnih sprememb. Končno poročilo, Geografski inštitut Antona Melika ZRC SAZU. Ljubljana.
Gabrovec, M., Ortar, J., Pavšek, M., Zorn, M., Triglav Čekada, M. 2013: The Triglav glacier between the years 1999 and 2012. Acta geographica Slovenica 53-2. DOI: https://doi.org/10.3986/AGS53202
Hagg, W., Mayer, C., Mayr, E., Heilig, A. 2012: Climate and glacier fluctuations in the Bavarian Alps in the past 120 years. Erdkunde 66-2. DOI: https://doi.org/10.3112/erdkunde.2012.02.03
Hughes, P. D. 2018: Little Ice Age glaciers and climate in the Mediterranean mountains: a new analysis. Cuadernos de Investigación Geográfica 44-1. DOI: https://doi.org/10.18172/cig.3362
Huss, M. 2012: Extrapolating glacier mass balance to the mountain-range scale: The European Alps 1900–2100. The Cryosphere 6-4. DOI: https://doi.org/10.5194/tc-6-713-2012
Huss, M. 2013: Density assumptions for converting geodetic glacier volume change to mass change. The Cryosphere 7-3. DOI: https://doi.org/10.5194/tc-7-877-2013
Huss, M., Dhulst, L., Bauder, A. 2015: New long-term mass-balance series for the Swiss Alps. Journal of Glaciology 61-227. DOI: https://doi.org/10.3189/2015JoG15J015
Huss, M., Fischer, M. 2016: Sensitivity of very small glaciers in the Swiss Alps to future climate change. Frontiers in Earth Science 4. DOI: https://doi.org/10.3389/feart.2016.00034
Kuhn, M. 1995: The mass balance of very small glaciers. Zeitschrift für Gletscherkunde und Glazialgeologie 31, 1-2.
Kumar, R. 2011: Glacieret. Encyclopedia of Snow, Ice and Glaciers. Dordrecht. DOI: https://doi.org/10.1007/978-90-481-2642-2_203
Lipar, M., Martín-Pérez, A., Tičar, J., Pavšek, M., Gabrovec, M., Hrvatin, M., Komac, B., Zorn, M., Zupan Hajna, N., Zhao, J.-X., Drysdale, R. N., Ferk, M. 2021; Subglacial carbonate deposits as a potential proxy for a glacier's former presence. The Cryosphere 15. DOI: https://doi.org/10.5194/tc-15-17-2021
Schöner, W., Böhm, R. 2007: A statistical mass-balance model for reconstruction of LIA ice mass for glaciers in the European Alps. Annals of Glaciology 46. DOI: https://doi.org/10.3189/172756407782871639
Schwerzmann, A., Funk, M., Blatter, H., Lüthi, M., Schwikowski, M., Palmer, A. 2006: A method to reconstruct past accumulation rates in alpine firn regions: A study on Fiescherhorn, Swiss Alps. Journal of Geophysical Research 111-F1. DOI: https://doi.org/10.1029/2005JF000283
Shahgedanova, M., Nosenko, G., Bushueva, I., Ivanov, M. 2012: Changes in area and geodetic mass balance of small glaciers, Polar Urals, Russia, 1950-2008. Journal of Glaciology 58-211. DOI: https://doi.org/10.3189/2012JoG11J233
Slater, T., Lawrence, I. R., Otosaka, I. N., Shepherd, A., Gourmelen, N., Jakob, L., Tepes, P., Gilbert, L. 2020: Review Article: Earth's ice imbalance. The Cryosphere Discussions. DOI: https://doi.org/10.5194/tc-2020-232
Thibert, E., Blanc, R., Vincent, C., Eckert, N. 2008: Glaciological and volumetric mass-balance measurements: error analysis over 51 years for Glacier de Serennes, French Alps. Journal of Glaciology 54-186. DOI: https://doi.org/10.3189/002214308785837093
Triglav Čekada, M. 2018: Ledeniki na kartah vojaške izmere avstro-ogrske monarhije. Raziskave s področja geodezije in geofizike 2017. Ljubljana.
Triglav Čekada, M., Barbo, P., Pavšek, M., Zorn, M. 2020: Changes in the Skuta Glacier (southeastern Alps) assessed using non-metric images. Acta geographica Slovenica 60-2. DOI: https://doi.org/10.3986/AGS.7674
Triglav Čekada, M., Bric, V., Klanjšček, M., Barborič, B., Pavšek, M. 2013: Zračno lasersko skeniranje zasneženega površja. Raziskave s področja geodezije in geofizike 2012. Ljubljana.
Triglav Čekada, M., Crosilla, F., Kosmatin Fras, M. 2009: A simplified analytical model for a-priori lidar point positioning error estimation and a review of lidar error sources. Photogrammetric Engineering and Remote Sensing 75-12. DOI: https://doi.org/10.14358/PERS.75.12.1425
Triglav Čekada, M., Crosilla, F., Kosmatin Fras, M. 2010: Theoretical lidar point density for topographic mapping in the largest scales. Geodetski vestnik 54-3. DOI: https://doi.org/10.15292/geodetski-vestnik.2010.03.403-416
Triglav Čekada, M., Gabrovec, M. 2008: Zgodovina geodetskih meritev na Triglavskem ledeniku. Geodetski vestnik 52-3.
Triglav Čekada, M., Gabrovec, M. 2013: Documentation of Triglav glacier, Slovenia, using non-metric panoramic images. Annals of Glaciology 54-62. DOI: https://doi.org/10.3189/2013AoG62A095
Triglav Čekada, M., Zorn, M., Colucci, R. R. 2014: Changes in the area of the Canin (Italy) and Triglav glaciers (Slovenia) since 1893 based on archive images and aerial laser scanning. Geodetski vestnik 58-2. DOI: https://doi.org/10.15292/geodetski-vestnik.2014.02.274-313
Verbič, T., Gabrovec, M. 2002: Georadarske meritve na Triglavskem ledeniku. Geografski vestnik 74-1.
Vrhovec, T., Velkavrh, A. 2001: Največja debelina snežne odeje na Kredarici. Geografski vestnik 73-2.
Zängl, W., Hamberger, S. 2004: Gletscher in Treibhaus. Steinfurt.
Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S., Hoelzle, M., Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A. P., Anderson, B., Bajracharya, S., Baroni, C., Braun, L. N., Cáceres, B. E., Casassa, G., Cobos, G., Dávila, L. R., Delgado Granados, H., Demuth, M. N., Espizua, L., Fischer, A., Fujita, K., Gadek, B., Ghazanfar, A., Hagen, J. O., Holmlund, P., Karimi, N., Li, Z., Pelto, M., Pitte, P., Popovnin, V. V., Portocarrero, C. A., Prinz, R., Sangewar, C. V., Severskiy, I., Sigurđsson, O., Soruco, A., Usubaliev, R., Vincent, C. 2015: Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology 61-228. DOI: https://doi.org/10.3189/2015JoG15J017
Zemp, M., Jansson, P., Holmlund, P., Gärtner-Roer, J., Koblet, T., Three, P., Haeberli, W. 2010: Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959-99) - Part 2: Comparison of glaciological and volumetric mass balance. The Cryosphere 4-3. DOI: https://doi.org/10.5194/tc-4-345-2010
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Mihaela Triglav Čekada, Matija Zorn
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.