Predicting the potential ecological niche distribution of Slovenian forests under climate change using MaxEnt modelling
DOI:
https://doi.org/10.3986/AGS.11561Keywords:
phytogeography, ecological niche modelling, shared socio-economic pathways (SSP), forest vegetation types, SloveniaAbstract
The aim of the article is to assess the potential impacts of climate change on Slovenian forests in the period 2080–2100 based on two climate scenarios: SSP1-2.6 (optimistic) and SSP5-8.5 (pessimistic) using the MaxEnt software. Slovenian forests are divided at the ecological community level into thirteen forest vegetation types. Analyses of changes in ecological niche areas, distances of vectors between centroids of present areas and future ecological niches, and general spatial changes are carried out. In addition, changes in the altitudinal zones of forest vegetation types were investigated. The results indicate significant changes for Thermophilous beech forests and Thermophilous hop-hornbeam, sessile oak, downy oak, Scots pine and black pine forests. The potential changes in the altitudinal zones of forest vegetation types indicate a clear trend of forest vegetation types moving to higher altitudinal zones.
Downloads
References
Araújo, M. B., Pearson, R. G., Thuiller, W., Erhard, M. 2005: Validation of species–climate impact models under climate change. Global Change Biology 11-9. DOI: https://doi.org/10.1111/j.1365-2486.2005.01000.x
Baisero, D., Visconti, P., Pacifici, M., Cimatti, M., Rondinini, C. 2020: Projected global loss of mammal habitat due to land-use and climate change. One Earth 2-6. DOI: https://doi.org/10.1016/j.oneear.2020.05.015
Bončina, A., Rozman, A., Dakskobler, I., Klopčič, M., Babij, V., Pojanec, A. 2021: Gozdni rastiščni tipi Slovenije. Vegetacijske, sestojne in upravljavske značilnosti. Ljubljana.
Brodie, G., Holland, E., N'Yeurt, A. D. R., Soapi, K., Hills, J. 2020: Seagrasses and seagrass habitats in Pacific small island developing states: Potential loss of benefits via human disturbance and climate change. Marine Pollution Bulletin 160. DOI: https://doi.org/10.1016/j.marpolbul.2020.111573
Brown, J. L. 2014: SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution 5-7. DOI: https://doi.org/10.1111/2041-210X.12200
Buras, A., Menzel, A. 2019: Projecting tree species composition changes of European forests for 2061–2090 Under RCP 4.5 and RCP 8.5 scenarios. Frontiers in Plant Science 9. DOI: https://doi.org/10.3389/fpls.2018.01986
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J. et al. 2015: System for automated geoscientific analyses (SAGA) v. 2.1.4. Geoscientific Model Development 8-7. DOI: https://doi.org/10.5194/gmd-8-1991-2015
Du, Z., He, Y., Wang, H., Wang, C., Duan, Y. 2021: Potential geographical distribution and habitat shift of the genus Ammopiptanthus in China under current and future climate change based on the MaxEnt model. Journal of Arid Environments 184. DOI: https://doi.org/10.1016/j.jaridenv.2020.104328
Dyderski, M. K., Paź, S., Frelich, L. E., Jagodziński, A. M. 2018: How much does climate change threaten European forest tree species distributions? Global Change Biology 24-3. DOI: https://doi.org/10.1111/gcb.13925
Fick, S. E., Hijmans, R. J. 2017: WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37-12. DOI: https://doi.org/10.1002/joc.5086
Fyllas, N. M., Koufaki, T., Sazeides, C. I., Spyroglou, G., Theodorou, K. 2022: Potential impacts of climate change on the habitat suitability of the dominant tree species in Greece. Plants 11-12. DOI: https://doi.org/10.3390/plants11121616
Gregorčič, T., Rozman, A., Repe, B. 2022: Uporaba metode maksimalne entropije pri proučevanju potencialnega vpliva podnebnih sprememb na slovenske gozdove. Dela 57. DOI: https://doi.org/10.4312/dela.57.57-88
Guisan, A., Thuiller, W., Zimmermann, N. E. 2017: Habitat suitability and distribution models: With applications in R. Cambridge. DOI: https://doi.org/10.1017/9781139028271
Hanczar, B., Hua, J., Sima, C., Weinstein, J., Bittner, M., Dougherty, E. R. 2010: Small-sample precision of ROC-related estimates. Bioinformatics 26-6. DOI: https://doi.org/10.1093/bioinformatics/btq037
Košir, Ž., Zorn Pogorelc, M., Kalan, J., Marinček, L., Smole, I., Čampa, L., Šolar, M. et al. 1974: Gozdnovegetacijska karta Slovenije 1 : 100.000. Ljubljana.
Košir, Ž., Zorn Pogorelc, M., Kalan, J., Marinček, L., Smole, I., Čampa, L., Šolar, M. et al. 2003: Gozdnovegetacijska karta Slovenije (digitalna verzija). Ljubljana.
Košir, Ž., Zorn Pogorelc, M., Kalan, J., Marinček, L., Smole, I., Čampa, L., Šolar, M. et al. 2007: Gozdnovegetacijska karta Slovenije (digitalna verzija). Ljubljana.
Kutnar, L., Kermavnar, J., Pintar, A. M. 2021: Climate change and disturbances will shape future temperate forests in the transition zone between Central and SE Europe. Annals of Forest Research 64-2. DOI: https://doi.org/10.15287/afr.2021.2111
Kutnar, L., Kobler, A. 2011: Prediction of forest vegetation shift due to different climate-change scenarios in Slovenia. Šumarski List 135-3,4.
Kutnar, L., Kobler, A. 2012: Possible impacts of global warming on forest tree species composition in Slovenia. Sustainable Land Management and Climate Changes. Proceedings of the Internatioanl Conference on "Land Conservation" - LANDCON 1209. Belgrade. Internet: http://data.sfb.rs/sftp/landcon1209/Landcon1209_Abstracts.pdf (13. 6. 2023).
Kutnar, L., Kobler, A., 2014. Possible impacts of global warming on forest tree species composition on Slovenia. Challenges: Sustainable Land Management - Climate Change. Reiskirchen.
Kutnar, L., Kobler, A. 2013: Sedanje stanje razširjenosti robinije (Robinia pseudoacacia L.) v Sloveniji in napovedi za prihodnost. Acta Silvae et Ligni 102.
Kutnar, L., Kobler, A., Bergant, K. 2009: Vpliv podnebnih sprememb na pričakovano prostorsko prerazporeditev tipov gozdne vegetacije. Zbornik gozdarstva in lesarstva 89.
Kutnar, L., Veselič, Ž., Dakskobler, I., Robič, D. 2012: Tipologija gozdnih rastišč Slovenije na podlagi ekoloških in vegetacijskih razmer za potrebe usmerjanja razvoja gozdov. Gozdarski vestnik 70-4.
Lee, J. Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J. P., Engelbrecht, F. et al. 2021: Future global climate: Scenario-based projections and near-term information. Climate Change 2021: The Physical Science Basis. Cambridge, New York.
Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J. et al. 2010: Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259-4. DOI: https://doi.org/10.1016/j.foreco.2009.09.023
Lobo, J. M., Jiménez-Valverde, A., Real, R. 2008: AUC: A misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography 17-2. DOI: https://doi.org/10.1111/j.1466-8238.2007.00358.x
Martinez Del Castillo, E., Zang, C. S., Buras, A., Hacket-Pain, A., Esper, J., Serrano-Notivoli, R., Hartl, C. et al. 2022: Climate-change-driven growth decline of European beech forests. Communications Biology 5. DOI: https://doi.org/10.1038/s42003-022-03107-3
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N. et al. 2021: Climate change 2021: The physical science basis. Cambridge, New York.
Mauri, A., Girardello, M., Strona, G., Beck, P. S. A., Forzieri, G., Caudullo, G., Manca, F., Cescatti, A. 2022: EU-Trees4F, a dataset on the future distribution of European tree species. Scientific Data 9. DOI: https://doi.org/10.1038/s41597-022-01128-5
Ninyerola, M., Pons, X., Roure, J. M. 2000: A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. International Journal of Climatology 20-14. DOI: https://doi.org/10.1002/1097-0088(20001130)20:14<1823::AID-JOC566>3.0.CO;2-B
Ninyerola, M., Pons, X., Roure, J. M. 2007: Objective air temperature mapping for the Iberian Peninsula using spatial interpolation and GIS. International Journal of Climatology 27-9. DOI: https://doi.org/10.1002/joc.1462
O'Donnell, M. S., Ignizio, D. A. 2012: Bioclimatic predictors for supporting ecological applications in the conterminous United States. USGS Data Series 691. DOI: https://doi.org/10.3133/ds691
Ogrin, D., Plut, D. 2012: Aplikativna fizična geografija Slovenije. 2. izdaja. Ljubljana.
Phillips, S. J. 2017: A brief tutorial on Maxent. Lessons in Conservation 3. Internet: http://www.amnh.org/content/download/141371/2285439/file/LinC3_SpeciesDistModeling_Ex.pdf (24. 10. 2022).
Phillips, S. J., Anderson, R. P., Schapire, R. E. 2006: Maximum entropy modeling of species geographic distributions. Ecological Modelling 190-3,4. DOI: https://doi.org/10.1016/j.ecolmodel.2005.03.026
Poggio, L., Simonetti, E., Gimona, A. 2018: Enhancing the WorldClim data set for national and regional applications. Science of The Total Environment 625. DOI: https://doi.org/10.1016/j.scitotenv.2017.12.258
Portilla Cabrera, C. V., Selvaraj, J. J. 2020: Geographic shifts in the bioclimatic suitability for Aedes aegypti under climate change scenarios in Colombia. Heliyon 6-1. DOI: https://doi.org/10.1016/j.heliyon.2019.e03101
Pörtner, H. O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M. et al. 2022: Climate change 2022: Impacts, adaptation, and vulnerability. Cambridge, New York.
Radosavljevic, A., Anderson, R. P. 2014: Making better Maxent models of species distributions: Complexity, overfitting and evaluation. Journal of Biogeography 41-4. DOI: https://doi.org/10.1111/jbi.12227
Repe, B. 2010: Prepoznavanje osnovnih prsti slovenske klasifikacije. Dela 34. DOI: https://doi.org/10.4312/dela.34.143-166
Saha, A., Rahman, S., Alam, S. 2021: Modeling current and future potential distributions of desert locust Schistocerca gregaria (Forskål) under climate change scenarios using MaxEnt. Journal of Asia-Pacific Biodiversity 14-3. DOI: https://doi.org/10.1016/j.japb.2021.05.001
Soilhi, Z., Sayari, N., Benalouache, N., Mekki, M. 2022: Predicting current and future distributions of Mentha pulegium L. in Tunisia under climate change conditions, using the MaxEnt model. Ecological Informatics 68. DOI: https://doi.org/10.1016/j.ecoinf.2021.101533
Stančič, L., Repe, B. 2018: Post-fire succession: Selected examples from the Karst region, southwest Slovenia. Acta geographica Slovenica 58-1. DOI: https://doi.org/10.3986/AGS.1942
Taccoen, A., Piedallu, C., Seynave, I., Perez, V., Gégout-Petit, A., Nageleisen, L.-M., Bontemps, J.-D., Gégout, J.-C. 2019: Background mortality drivers of European tree species: Climate change matters. Proceedings of the Royal Society B: Biological Sciences 286-1900. DOI: https://doi.org/10.1098/rspb.2019.0386
Vido, J., Nalevanková, P. 2021: Impact of natural hazards on forest ecosystems and their surrounding landscape under climate change. Water 13-7. DOI: https://doi.org/10.3390/w13070979
Yackulic, C. B., Chandler, R., Zipkin, E. F., Royle, J. A., Nichols, J. D., Campbell Grant, E. H., Veran, S. 2013: Presence-only modelling using MAXENT: wWhen can we trust the inferences? Methods in Ecology and Evolution 4-3. DOI: https://doi.org/10.1111/2041-210x.12004
Zeng, J., Li, C., Liu, J., Li, Y., Hu, Z., He, M., Zhang, H., Yan, H. 2021: Ecological assessment of current and future Pogostemon cablin Benth. potential planting regions in China based on MaxEnt and ArcGIS models. Journal of Applied Research on Medicinal and Aromatic Plants 24. DOI: https://doi.org/10.1016/j.jarmap.2021.100308
Zhang, K., Yao, L., Meng, J., Tao, J. 2018: Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Science of The Total Environment 634. DOI: https://doi.org/10.1016/j.scitotenv.2018.04.112
Zhao, H., Zhang, H., Xu, C. 2020: Study on Taiwania cryptomerioides under climate change: MaxEnt modeling for predicting the potential geographical distribution. Global Ecology and Conservation 24. DOI: https://doi.org/10.1016/j.gecco.2020.e01313
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 ZRC SAZU Anton Melik Geographical Institute
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.