The effects of intensive logging on the capacity of karst dolines to provide potential microrefugia for cool-adapted plants

  • Péter János Kiss University of Szeged, Department of Ecology, Doctoral School of Environmental Sciences, Szeged,
  • Csaba Tölgyesi University of Szeged, Department of Ecology, Szeged
  • Imola Bóni University of Szeged, Department of Ecology, Szeged
  • László Erdős MTA Centre for Ecological Research, Department of Terrestrial Ecology, Vácrátót
  • András Vojtkó Eszterházy Károly University of Applied Sciences, Department of Botany, Eger
  • István Elek Maák University of Szeged, Department of Ecology, Szeged, Hungary, and Polish Academy of Sciences, Museum and Institute of Zoology, Warsaw,, Poland
  • Zoltán Bátori University of Szeged, Department of Ecology, Szeged
Keywords: biology, geography, climate change, logging, cool-adapted plants, karst area, vegetation pattern, Hungary

Abstract

Dolines are local depressions of karst surfaces. They can be considered potential microrefugia for various species. We investigated the species composition and vegetation pattern of two medium-sized dolines in Hungary before and 10 years after logging, and analysed how different species groups (oak forest species, beech and ravine forest species and disturbance-tolerant species) were affected. The cover and number of oak forest species and disturbance-tolerant species increased, while the cover and number of beech and ravine forest species decreased within dolines due to logging. Therefore, their species composition and vegetation pattern have changed substantially, and dolines have partially lost their capacity to act as safe havens for plant species adapted to cooler conditions.

Downloads

Download data is not yet available.

Author Biography

László Erdős, MTA Centre for Ecological Research, Department of Terrestrial Ecology, Vácrátót

Department of Terrestrial Ecology

References

Ashcroft, M. B. 2010: Identifying refugia from climate change. Journal of Biogeography 37-8. DOI: https://doi.org/10.1111/j.1365-2699.2010.02300.x

Bárány-Kevei, I. 1999: Microclimate of karstic dolines. Acta Climatologica Universitatis Szegediensis 32/33.

Bárány-Kevei, I. 2011: Changes in the vegetation of dolines in Aggtelek and Bükk Mountains. Acta Climatologica et Chorologica 44/45.

Bartholy, J., Pongrácz, R., Gelybó, G., Szabó, P. 2008: Analysis of expected climate change in the Carpathian Basin using the PRUDENCE results. Időjárás 112, 3-4.

Bates, D., Maechler, M., Bolker, B. 2013: lme4: linear mixedeffects models using S4 classes. R package version 0.999999-2. Internet: http://cran.r-project.org/package=lme4 (26. 4. 2018).

Bátori, Z., Csiky, J., Erdős, L., Morschhauser, T., Török, P., Körmöczi, L. 2009: Vegetation of the dolines in Mecsek Mountains (South Hungary) in relation to the local plant communities. Acta Carsologica 38, 2-3. DOI: https://doi.org/10.3986/ac.v38i2-3.125

Bátori, Z., Csiky, J., Farkas, T., Vojtkó, E. A., Erdős, L., Kovács, D., Wirth, T., Körmöczi, L., Vojtkó, A. 2014a: The conservation value of karst dolines for vascular plants in woodland habitats of Hungary: refugia and climate change. International Journal of Speleology 43-1. DOI: https://doi.org/10.5038/1827-806X.43.1.2

Bátori, Z., Lengyel, A., Maróti, M., Körmöczi, L., Tölgyesi, C., Bíró, A., Tóth, M., Kincses, Z., Cseh, V., Erdős, L. 2014b: Microclimate-vegetation relationships in natural habitat islands: species preservation and conservation perspectives. Időjárás 118-3.

Bátori, Z., Gallé, R., Erdős, L., Körmöczi, L. 2011: Ecological conditions, flora and vegetation of a large doline in the Mecsek Mountains (South Hungary). Acta Botanica Croatica 70-2. DOI: https://doi.org/10.2478/v10184-010-0018-1

Bátori, Z., Körmöczi, L., Erdős, L., Zalatnai, M., Csiky, J. 2012: Importance of karst sinkholes in preserving relict, mountain, and wet-woodland plant species under sub-Mediterranean climate: A case study from southern Hungary. Journal of Cave and Karst Studies 74-1. DOI: https://doi.org/10.4311/2011LSC0216

Bátori, Z., Vojtkó, A., Farkas, T., Szabó, A., Havadtői, K., Vojtkó, E. A., Tölgyesi, C., Cseh, V., Erdős, L., Maák, I., Keppel G. 2017: Large- and small-scale environmental factors drive distributions of cool-adapted plants in karstic microrefugia. Annals of Botany 119-2. DOI: https://doi.org/10.1093/aob/mcw233

Berbet, M. L. C., Costa, M. H. 2003: Climate change after tropical deforestation: seasonal variability of surface albedo and its effects on precipitation change. Journal of Climate 16. DOI: https://doi.org/10.1175/1520-0442(2003)016<2099:CCATDS>2.0.CO;2

Birks, H. H., Ammann, B. 2000: Two terrestrial records of rapid climatic change during the glacial–Holocene transition (14,000–9,000 calendar years B.P.) from Europe. PNAS 97-4. DOI: https://doi.org/10.1073/pnas.97.4.1390

Breg Valjavec, M. 2014: Study of filled dolines by using 3D stereo image processing and electrical resistivity imaging. International Journal of Speleology 43-1. DOI: https://doi.org/10.5038/1827-806X.43.1.6

Breg Valjavec, M., Ribeiro, D., Čarni, A. 2017: Vegetation as the bioindicator of human-induced degradation in karst landscape: case study of waste-filled dolines. Acta Carsologica 46-1. DOI: https://doi.org/10.3986/ac.v46i1.4712

Breg Valjavec, M., Zorn, M., Čarni, A. 2018: Bioindication of human-induced soil degradation in enclosed karst depressions (dolines) using Ellenberg indicator values (Classical Karst, Slovenia). Science of the Total Environment 640/641. DOI: https://doi.org/10.1016/j.scitotenv.2018.05.294

Breg, M. 2007: Degradation of dolines on Logaško Polje (Slovenia). Acta Carsologica 36-2. DOI: https://doi.org/10.3986/ac.v36i2.191

Calò, F., Parise, M. 2006: Evaluating the human disturbance to karst environments in Southern Italy. Acta Carsologica 35, 2-3. DOI: https://doi.org/10.3986/ac.v35i2-3.227

Cernatič-Gregorič, A., Zega, M. 2010: The impact of human activities on dolines (Sinkholes) – typical geomorphologic features on karst (Slovenia) and possibilities of their preservation. Geographica Pannonica 14-4. DOI: https://doi.org/10.5937/GeoPan1004109C

Chytrý, M., Tichý, L., Holt, J., Botta-Dukát, Z. 2002: Determination of diagnostic species with statistical fidelity measures. Journal of Vegetation Science 13-1. DOI: https://doi.org/10.1111/j.1654-1103.2002.tb02025.x

Czúcz, B., Gálhidy, L., Mátyás, C. 2011: Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Annals of Forest Science 68-1. DOI: https://doi.org/10.1007/s13595-011-0011-4

Dobrowski, S. Z. 2010: A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biology 17-2. DOI: https://doi.org/10.1111/j.1365-2486.2010.02263.x

Dövényi, Z., Ambrózy, P., Juhász, Á., Marosi, S., Mezosi, G., Michalkó, G., Somogy, S., Szalai, Z., Tiner, T. 2010: Magyarország kistájainak katasztere (Inventory of microregions in Hungary). Budapest.

Dunn, R. R. 2004: Recovery of faunal communities during tropical regeneration. Conservation Biology 18-2. DOI: https://doi.org/10.1111/j.1523-1739.2004.00151.x

Egli, B. R. 1991: The special flora, ecological and edaphic conditions of dolines in the mountain of Crete. Botanika Chronika 10.

Frey, S. J. K., Hadley, A. S., Johnson, S. L., Schulze, M., Jones, J. A., Betts, M. G. 2016: Spatial models reveal the microclimatic buffering capacity of old-growth forests. Science Advances 2. DOI: https://doi.org/10.1126/sciadv.1501392

Gentili, R., Baroni, C., Caccianiga, M., Armiraglio, S., Ghiani, A., Citterio, S. 2015: Potential warm-stage microrefugia for alpine plants: Feedback between geomorphological and biological processes. Ecological Complexity 21. DOI: https://doi.org/10.1016/j.ecocom.2014.11.006

Geßler, A., Keitel, C., Kreuzwieser, J., Matyssek, R., Seiler, W., Rennenberg, H. 2007: Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21-1. DOI: https://doi.org/10.1007/s00468-006-0107-x

Guariguata, M. R., Ostertag, R. 2001: Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management 148, 1-3. DOI: https://doi.org/10.1016/S0378-1127(00)00535-1

Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A-L., Totland, Ø. 2009: How does climate warming affect plant-pollinator interactions? Ecology Letters 12-2. DOI: https://doi.org/10.1111/j.1461-0248.2008.01269.x

Hlásny, T., Barcza, Z., Fabrika M., Balázs, B., Churkina, G., Pajtík, J., Sedmák, R., Turčáni, M. 2011: Climate change impacts on growth and carbon balance of forests in Central Europe. Climate Research 47-3. DOI: https://doi.org/10.3354/cr01024

Horvat, I. 1953: Vegetacija ponikava. Geografski Glasnik 14/15.

Horváth, F., Dobolyi, Z. K., Morschhauser, T., Lőkös, L., Karas, L., Szerdahelyi, T. 1995: FLORA database. 1.2. Vácrátót.

Hoyk, E. 1999: Geoecological studies on the karstic surfaces of the planned protected area in Western Mecsek, South Hungary. Acta Carsologica 28-2. DOI: https://doi.org/10.3986/ac.v28i2.485

Iatroú, G., Fournaraki, C. 2006: Horstrissea dolinicola. The IUCN Red List of Threatened Species 2006. DOI: http://dx.doi.org/10.2305/IUCN.UK.2006.RLTS.T61613A12522933.en

Kemencei, Z., Farkas, R., Páll-Gergely, B., Vilisics, F., Nagy, A., Hornung, E., Sólymos, P. 2014: Microhabitat associations of land snails in forested dolinas: implications for coarse filter conservation. Community Ecology 15-2. DOI: https://doi.org/10.1556/ComEc.15.2014.2.6

Keppel, G., Anderson, S., Williams, C., Kleindorfer, S., O’Connell, C. 2017: Microhabitats and canopy cover moderate high summer temperatures in a fragmented Mediterranean landscape. PLoS ONE 12-8. DOI: https://doi.org/10.1371/journal.pone.0183106

Keppel, G., Mokany, K., Wardell-Johnson, G. W., Phillips, B. L., Welbergen, J. A., Reside, A. E. 2015: The capacity of refugia for conservation planning under climate change. Frontiers in Ecology and the Environment 13-2. DOI: https://doi.org/10.1890/140055

Keppel, G., Van Niel, K. P., Wardell-Johnson, G. W., Yates, C. J., Byrne, M., Mucina, L., Schut, A. G. T., Hopper, S. D., Franklin, S. E. 2012: Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography 21-4. DOI: https://doi.org/10.1111/j.1466-8238.2011.00686.x

Kobal, M., Bertoncelj, I., Pirotti, F., Dakskobler, I., Kutnar, L. 2015: Using lidar data to analyse sinkhole characteristics relevant for understory vegetation under forest cover – case study of a high karst area in the Dinaric Mountains. PLoS ONE 10-3. DOI: https://doi.org/10.1371/journal.pone.0122070

Kovačič, G., Ravbar, N. 2013: Analysis of human induced changes in a karst landscape – the filling of dolines in the Kras plateau, Slovenia. Science of the Total Environment 447. DOI: https://doi.org/10.1016/j.scitotenv.2013.01.002

Lehmann, A. 1970: Tarvágás által okozott ökológiai változások az abaligeti karszton. Pécsi Műszaki Szemle 25.

Lukić, T., Marić, P., Hrnjak, I., B. Gavrilov, M., Mladjan, D., Zorn, M., Komac, B., Milošević, Z., Marković, B. S., Sakulski, D., Jordaan, A., Đorđević, J., Pavić, D., Stojsavljević, R. 2017: Forest fire analysis and classification based on a Serbian case study. Acta geographica Slovenica 57-1. DOI: https://doi.org/10.3986/AGS.918

McLaughlin, B. C., Ackerly, D. D., Klos, P. Z., Natali, J., Dawson, T. E., Thompson, S. E. 2017: Hydrologic refugia, plants, and climate change. Global Change Biology 23-8. DOI: https://doi.org/10.1111/gcb.13629

Modrić Surina, Ž., Surina, B. 2010: Snowbed vegetation in Croatia: Phytosociology, ecology and conservation status. Plant Biosystems 144-4. DOI: https://doi.org/10.1080/11263504.2010.502716

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens M. H. H., Szoecs, E., Wagner, H. 2018: Vegan: Community Ecology Package. Internet: http://CRAN.R-project.org/package=vegan (26. 4. 2018).

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team 2018: nlme: linear and nonlinear mixed effects models. R package version 3.1-137. Internet: https://cran.r-project.org/web/packages/nlme/index.html (26. 4. 2018).

R Core Team, 2018: R: A language and environment for statistical computing. Vienna. Internet: http://www.R-project.org/ (6. 5. 2018).

Raschmanova, N., Miklisova, D., Kovac, L., Sustr, V. 2015: Community composition and cold tolerance of soil Collembola in a collapse karst doline with strong microclimate inversion. Biologia 70-6. DOI: https://doi.org/10.1515/biolog-2015-0095

Ritter Beck von Mannagetta, G. 1906: Die Umkehrung der Pflanzenregionen in den Dolinen des Karstes. Deutsche Universität Prag, Prag.

Rull, V. 2009: Microrefugia. Journal of Biogeography 36-3. DOI: https://doi.org/10.1111/j.1365-2699.2008.02023.x

Růžička, V., Mlejnek, R., Juřičková, L., Tajovský, K., Šmilauer, P., Zajíček, P. 2016: Invertebrates of the Macocha Abyss (Moravian Karst, Czech Republic). Acta Carsologica 45-1. DOI: https://doi.org/10.3986/ac.v45i1.896

Saikh, H., Varadachari, C., Ghosh, K. 1998: Changes in carbon, nitrogen and phosphorus levels due to deforestation and cultivation: A case study in Simlipal National Park, India. Plant and Soil 198-2. DOI: https://doi.org/10.1023/A:1004391615003

Stančič, L., Repe, B. 2018: Post-fire succession: Selected examples from the Karst region, southwest Slovenia. Acta geographica Slovenica 58-1. DOI: https://doi.org/10.3986/AGS.1942

Stewart, J. R., Lister, A. M., Barnes, I. Dalén, L. 2010: Refugia revisited: individualistic responses of species in space and time. Proceedings of the Royal Society B 277-1682. DOI: https://doi.org/10.1098/rspb.2009.1272

Su, Y., Tang, Q., Mo, F., Xue, Y. 2017: Karst tiankengs as refugia for indigenous tree flora amidst a degraded landscape in southwestern China. Scientific Reports 7. DOI: https://doi.org/10.1038/s41598-017-04592-x

The plant list, 2018. Internet: http://www.theplantlist.org (6. 5. 2018).

Tichý, L. 2002: JUICE, software for vegetation classification. Journal of Vegetation Science 13-3. DOI: https://doi.org/10.1111/j.1654-1103.2002.tb02069.x

Troiani, N., Tardella, F. M., Malatesta, L., Corazza, M., Ferrari, C., Catorci, A. 2016: Long-term cropland abandonment does not lead per se to the recovery of semi-natural herb communities deemed habitats of community interest. Acta Botanica Croatica 75-2.

Whiteman, C. D., Haiden, T., Pospichal, B., Eisenbach, S., Steinacker, R. 2004: Minimum temperatures, diurnal temperature ranges, and temperature inversion in limestone sinkholes of different sizes and shapes. Journal of Applied Meteorology 43. DOI: https://doi.org/10.1175/1520-0450(2004)043<1224:MTDTRA>2.0.CO;2

Willis, K. J., Rudner, E., Sümegi, P. 2000: The full-glacial forests of Central and southeastern Europe. Quaternary Research 53-2. DOI: https://doi.org/10.1006/qres.1999.2119

Published
2020-05-26
How to Cite
1.
Kiss PJ, Tölgyesi C, Bóni I, Erdős L, Vojtkó A, Maák IE, Bátori Z. The effects of intensive logging on the capacity of karst dolines to provide potential microrefugia for cool-adapted plants. AGS [Internet]. 2020May26 [cited 2020Sep.19];60(1):37–48. Available from: https://ojs.zrc-sazu.si/ags/article/view/6817
Section
Papers