Detection of earthflow dynamics using medium-resolution digital terrain models: Diachronic perspective of the Jovac earthflow, Southern Serbia

Authors

DOI:

https://doi.org/10.3986/AGS.9818

Keywords:

landslide, earthflow, GIS analysis, Jovac, Serbia

Abstract

The paper presents and discusses the landslide research procedure related to the topography before and after its occurrence, using the comparative analysis of two medium-resolution digital terrain models. The case study is the Jovac mega-landslide—the largest landslide to occur in Serbia in the last 100 years, active for three days in February 1977. The indicators used to determine the volume and movement mechanism were the spatial distribution of elevation differences within the two digital terrain models (DTM), and the analysis of geomorphological features before the landslide. The obtained elevation differences allowed the definition of the approximate landslide volume: 11.6 × 106 m3. All the data obtained indicate that the movement mechanism falls into the category of earthflow.

Downloads

Download data is not yet available.

References

Abolmasov, B., Milenković, S., Marjanović, M., Đurić, U., Jelisavac, B. 2015: A geotechnical model of the Umka landslide with reference to landslides in weathered Neogene marls in Serbia. Landslides 12. DOI: https://doi.org/10.1007/s10346-014-0499-4

Amundsen, J., Johnson, S., Rouse, K., Wang, H. 2010: Using LiDAR‐derived DTM’s to delineate and characterize landslides in Northern Kentucky and Hamilton County, Ohio. Internet: http://www.trishock.com/acaDTMic/pdf/lidar_landslides.pdf (22. 12. 2020).

Ardizzone, F., Cardinali, M., Galli, M., Guzzetti, F., Reichenbach, P. 2007: Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar. Natural Hazards and Earth System Sciences 7-6. DOI: https://doi.org/10.5194/nhess-7-637-2007

Babović, M., Roglić, Č., Avramović, V., Marić, S. 1977: Tumač za Osnovnu geološku kartu 1 : 100,000, list Trgovište. Savezni geološki zavod, Beograd.

Chen, Z., Ye, F., Fu, W., Ke, Y., Hong, H. 2020: The influence of DTM spatial resolution on landslide susceptibility mapping in the Baxie River basin, NW China. Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards 101-3. DOI: https://doi.org/10.1007/s11069-020-03899-9

Claessens, L., Heuvelink, G. B. M., Schoorl, J. M., Veldkamp, A. 2005: DEM resolution effects on shallow landslide hazard and soil redistribution modelling. Earth Surface Process Landforms 30-4. DOI: https://doi.org/10.1002/esp.1155

Conoscenti, C., Ciaccio, M., Caraballo-Arias, N. A., Gómez-Gutiérrez, Á., Rotigliano, E., Agnesi, V. 2015: Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines: A case of the Belice River basin (western Sicily, Italy). Geomorphology 242. DOI: https://doi.org/10.1016/j.geomorph.2014.09.020

Corsini, A.; Borgatti, L.; Cervi, F.; Dahne, A.; Ronchetti, F., Sterzai, P. 2009: Estimating mass-wasting processes in active earth slides – earth flows with time-series of High-Resolution DEMs from photogrammetry and airborne LiDAR. Natural Hazards and Earth System Sciences 9. DOI: https://doi.org/10.5194/nhess-9-433-2009

Cruden, D. M. 1991: A simple definition of a landslide. Bulletin of the International Association of Engineering Geology 43. DOI: https://doi.org/10.1007/BF02590167

Cruden, D. M., Varnes, D. J. 1996: Landslide types and processes. Landslides: Investigation and Mitigation. Washington.

Cvetković, V.; Šarić, K., Mladenović, A. 2019: Magmatizam i metamorfizam. Geohemijsko-geodinamička perspektiva. Beograd.

Dietrich, W. E. and Montgomery, D. R 1998: SHALSTAB: A digital terrain model for mapping shallow landslide potential. NCASI – National council of the paper industry for air and stream improvement, 1998.

Đomlija, P. 2018: Identification and classification of landslides and erosion phenomena using the visual interpretation of the Vinodol valley digital elevation model. Ph.D. thesis, University of Zagreb. Zagreb.

Fernández, T., Pérez, J. L., Cardenal, F. J., Delgado, J., Irigaray, C., Chacón, J. 2011: Evolution of a diachronic landslide by comparison between different DEMs obtained from digital photogrammetry techniques in Las Alpujarras (Granada, Southern Spain). Internet: https://www.isprs.org/proceedings/2011/gi4dm/PDF/OP69.pdf (18.10.2020).

Fernández, T., Pérez, J. L., Colomo, C., Cardenal, J., Delgado, J., Palenzuela, J. A., Irigaray, C., Chacón, J. 2017: Assessment of the evolution of a landslide using digital photogrammetry and LiDAR techniques in the Alpujarras Region (Granada, Southeastern Spain). Geosciences 7-2. DOI: https://doi.org/10.3390/geosciences7020032

Gigović, L. J. 2010: Digitalni modeli visina i njihova primena u vojnoj analizi terena. Vojnotehnički glasnik 58-2.

Giordan, D., Allasia, P., Manconi, A., Baldo, M., Santangelo, M., Cardinali, M., Corazza, A. et al. 2013: Morphological and kinematic evolution of a large earthflow: The Montaguto landslide, southern Italy. Geomorphology 187. DOI: https://doi.org/10.1016/j.geomorph.2012.12.035

Govedarica, M., Borisov, M. 2011: The Analysis of data quality on topographic maps. Geodetski vestnik 55-4.

Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., Chang K. T. 2012: Landslide inventory maps: New tools for an old problem. Earth-Science Reviews 112-1,2. DOI: https://doi.org/10.1016/j.earscirev.2012.02.001

Hrvatin, M., Perko, D. 2005: Differences between 100-meter and 25-meter digital elevation models according to types of relief in Slovenia. Acta geographica Slovenica 45-1. DOI: https://doi.org/10.3986/AGS45101

Hu, S., Qiu, H., Pei, Y., Cui, Y., Xie, W., Wang, X.; Yang, D. et al. 2019: Digital terrain analysis of a landslide on the loess tableland using high-resolution topography data. Landslides 16. DOI: https://doi.org/10.1007/s10346-018-1103-0

Hungr, O., Leroueil, S., Picarelli, L. 2014: The Varnes classification of landslide types, an update. Landslides 11. DOI: https://doi.org/10.1007/s10346-013-0436-y

Internet 1: http://iplhq.org/ (29. 9. 2021).

Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M. H., Loye, A. Metzger, R., Pedrazzini, A. 2012: Use of LIDAR in landslide investigations: A review. Natural Hazards 61-1. DOI: https://doi.org/10.1007/s11069-010-9634-2

Janjić, I. 1996: Geneza i svojstva klizišta u neogenim sedimentima južnog oboda Panonskog basena. M.Sc. thesis, University of Belgrade. Belgrade.

Jevremović, D., Sunarić, D., Kostić, S. 2011: Landslide and rockfall induced lakes in Serbia. Tehnika 66-5.

Jovanović, O., Novaković, M. 1988: Litološke odlike tercijarnih naslaga Vranjsko-pčinjskog basena. Vesnik geološkog zavoda 44.

Keefer, D. K., Johnson, A. M. 1983: Earth flows: Morphology, mobilization and movement. Washington.

Lazarević, R. 1957: The relief of the immediate Danube basin between Grocka and Smederevo. Journal of the Geographical Institute ''Jovan Cvijić'' SASA 13.

Lazarević, R. 1977: Jovačko kliziste. Erozija 8.

Lazarević, R. 2000: Klizišta. Beograd.

Lee, S., Ryu, J. H., Won, J. S., Park, H. J. 2004: Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Engineering Geology 71-3,4. DOI: https://doi.org/10.1016/S0013-7952(03)00142-X

Lollino, P., Giordan, D., Allasia, P. 2014: The Montaguto earthflow: A back-analysis of the process of landslide propagation. Engineering Geology 170. DOI: https://doi.org/10.1016/j.enggeo.2013.12.011

Luković, T. M. 1951: Važniji tipovi naših klizišta i mogućnosti njihovog saniranja. Geološki Vesnik 9.

Mahalingam, R., Olsen, M. J. 2016: Evaluation of the influence of source and spatial resolution of DEMs on derivative products used in landslide mapping. Geomatics, Natural Hazards and Risk 7-6. DOI: https://doi.org/10.1080/19475705.2015.1115431

McKean, J., Roering, J. 2004: Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 57-3,4. DOI: https://doi.org/10.1016/S0169-555X(03)00164-8

Mészáros, М. 2013: Spatial analysis of geohazard on the Fruška Gora mountain. Ph.D. thesis, University of Szeged. Szeged.

Pavlović, R., Ćalić, J., Djurović, P., Trivić, B., Jemcov, I. 2012: Recent landform evolution in Serbia. Recent Landform Evolution. The Carpatho-Balkan-Dinaric Region. Dordrecht.

Petrović, V., Stanković, S. 1981: Veliko klizište u selu Jovac. Simpozijum istraživanje i sanacija klizišta. Beograd.

Prelević, D., Foley, S. F., Romer, R. L., Cvetković, V., Downes, H. 2005: Tertiary ultrapotassic volcanism in Serbia: Constraints on petrogenesis and mantle source characteristics. Journal of Petrology 46-7. DOI: https://doi.org/10.1093/petrology/egi022

Pre-processing algorithms and landslide modelling on remotely sensed DEMs. Geomorphology 113-1,2. DOI: https://doi.org/10.1016/j.geomorph.2009.03.023

Rogers, D. J., Chung, J. 2016: Mapping earthflows and earthflow complexes using topographic indicators. Engineering Geology 208. DOI: https://doi.org/10.1016/j.enggeo.2016.04.025

Santini, M., Grimaldi, S., Nardi, F., Petroselli, A., Rulli, M. C. 2010:

Schulz, W. H. 2007: Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington. Engineering Geology 89-1,2. DOI: https://doi.org/10.1016/j.enggeo.2006.09.019

Soeters, R., van Westen, C. J. 1996: Slope instability recognition, analysis and zonation. Landslides. Investigation and Mitigation. Washington D. C.

Tarolli, P., Sofia, G., Dalla Fontana, G. 2012: Geomorphic features extraction from high resolution topography: Landslide crowns and bank erosion. Natural Hazards 61-1. DOI: https://doi.org/10.1007/s11069-010-9695-2

Tarolli, P., Tarboton, D. G. 2006: A new method for determination of most likely landslide initiation points and the evaluation of digital terrain model scale in terrain stability mapping. Hydrology and Earth System Sciences 10. DOI: https://doi.org/10.5194/hess-10-663-2006

The international geotechnical societies’ UNESCO working party for world landslide Inventory: Multilingual landslide glossary. Richmond, 1993.

UNESCO working party on world landslide inventory: A suggested method for describing the activity of a landslide. Bulletin of the International Association of Engineering Geology 47.

Urciuoli, G., Comegna, L., Di Maio, C., Picarelli, L. 2016: The Basento valley: A natural laboratory to understand the mechanics of earthflow. Rivista Italiana di Geotecnica 50-1.

Van Den Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Nyssen, J., Moeyersons, J., van Beek, L. P. H., Vandekerckhove, L. 2007: Use of LIDAR-derived images for mapping old landslides under forest. Earth Surface Processes and Landforms 32–5. DOI: https://doi.org/10.1002/esp.1417

Varnes, D. J. 1978: Slope movement types and processes. Landslides, Analysis and Control. Special Report 176. Washington, D. C.

Varnes, D. J. 1984 Landslide hazard zonation: A review of principles and practice. Natural Hazards 3. Paris.

Vukanović, M., Dimitrijević, M., Dimitrijević, M. N., Karajičić, Lj., Rakić, M. O. 1970: Tumač za Osnovnu geološku kartu 1 : 100,000, list Vranje. Savezni geološki zavod. Beograd.

Downloads

Published

01-12-2021

How to Cite

Milošević, M., Štrbac, D., Ćalić, J. ., & Radovanović, M. . (2021). Detection of earthflow dynamics using medium-resolution digital terrain models: Diachronic perspective of the Jovac earthflow, Southern Serbia. Acta Geographica Slovenica, 61(2), 187–206. https://doi.org/10.3986/AGS.9818

Issue

Section

Articles