Application of Angot precipitation index in the assessment of rainfall erosivity: Vojvodina Region case study (North Serbia)

Keywords: climate change, precipitation, rainfall erosivity, soil erosion, Angot precipitation index, Vojvodina, Serbia

Abstract

The paper aims to provide an overview of the most important parameters (the occurrence, frequency and magnitude) in Vojvodina Region (North Serbia). Monthly and annual mean precipitation values in the period 1946–2014, for the 12 selected meteorological stations were used. Relevant parameters (precipitation amounts, Angot precipitation index) were used as indicators of rainfall erosivity. Rainfall erosivity index was calculated and classified throughout precipitation susceptibility classes liable of triggering soil erosion. Precipitation trends were obtained and analysed by three different statistical approaches. Results indicate that various susceptibility classes are identified within the observed period, with a higher presence of very severe rainfall erosion in June and July. This study could have implications for mitigation strategies oriented towards reduction of soil erosion by water.

Downloads

Download data is not yet available.

References

Alexandersson, H. 1986: A homogeneity test applied to precipitation data. Journal of Climatology 6-6. DOI: https://doi.org/10.1002/joc.3370060607

Alipour, Z. T., Mahdian, M. H., Pazira, E., Hakimkhani, S., Saeedi, M. 2012: The determination of the best rainfall erosivity index for Namak lake basin and evaluation of Spatial Variations. Journal of Basic and Applied Scientific Research 2-1.

Angulo-Martínez, M., Beguería, S. 2009: Estimating rainfall erosivity from daily precipitation records: A comparison among methods using data from the Ebro Basin (NE Spain). Journal of Hydrology 379-1,2. DOI: https://doi.org/10.1016/j.jhydrol.2009.09.051

Apaydin, H., Erpul, G., Bayramin, I., Gabriels, D. 2006: Evaluation of indices for characterizing the distribution and concentration of precipitation: A case for the region of Southeastern Anatolia Project, Turkey. Journal of Hydrology 328-3,4. DOI: https://doi.org/10.1016/j.jhydrol.2006.01.019

Arnoldus, H. M. J. 1980: An approximation of the rainfall factor in the Universal Soil Loss Equation. Assessment of Erosion. Chichester.

Auerswald, K., Fiener, P., Martin, W., Elhaus, D. 2014: Use and misuse of the K factor equation in soil erosion modeling: An alternative equation for determining USLE nomograph soil erodibility values. Catena 118. DOI: https://doi.org/10.1016/j.catena.2014.01.008

Basarin, B., Lukić, T., Mesaroš, M., Pavić, D., Đorđević, J., Matzarakis, A. 2018: Spatial and temporal analysis of extreme bioclimate conditions in Vojvodina, Northern Serbia. International Journal of Climatology 38-1. DOI: https://doi.org/10.1002/joc.5166

Bayramin, I., Erpul, G., Erdogan, H. E. 2006: Use of CORINE methodology to assess soil erosion risk in the semi-arid area of Beypazari, Ankara. Turkish Journal of Agriculture and Forestry 30.

Bice, D., Montanari, A., Vučetić, V., Vučetić, M. 2012: The influence of regional and global climatic oscillations on Croatian climate. International Journal of Climatology 32-10. DOI: https://doi.org/10.1002/joc.2372

Bjelajac., D., Lukić, T., Micić, T., Miljković, Đ., Sakulski, D. 2016: Rainfall erosivity as an indicator of potential threat to erosion vulnerability in protected areas of Vojvodina (North Serbia). Proceedings of the International Conference on Monitoring and Management of Visitors in Recreational and Protected Areas. Novi Sad.

Blinkov, I. 2015a: The Balkans - The most erosive part of Europe? Bulletin of the Faculty of Forestry 111. DOI: https://doi.org/10.2298/GSF1511009B

Blinkov, I. 2015b: Review and comparison of water erosion intensity in the Western Balkan and EU countries. Contributions Section of Natural, Mathematical and Biotechnical Sciences 36-1. DOI: https://doi.org/10.20903/csnmbs.masa.2015.36.1.63

Boardman, J., Poesen, J. (eds.) 2006: Soil erosion in Europe. Chichester. DOI: https://doi.org/10.1002/0470859202

Boardman, J., Vandaele, K., Evans, R., Foster I. D. L. 2019: Off‐site impacts of soil erosion and runoff: Why connectivity is more important than erosion rates. Soil Use Management 35-2. DOI: https://doi.org/10.1111/sum.12496

Borrelli, P., Alewell, C.,Alvarez, P., Ayach Anache, J. A., Baartman, J., Ballabio, C., Bezak, N., Biddoccu, M., Cerdà, A., Chalise, D., Chen, S., Chen, W., de Girolamo, A. M., Gessesse, G. D., Deumlich, D., Diodato, N., Efthimiou, N., Erpul, G., Fiener, P., Freppaz, M., Gentile, F., Gericke, A., Haregeweyn, N., Hu, B., Jeanneau, A., Kaffas, K., Kiani-Harchegani, M., LizagaVilluendas, I., Li, C., Lombardo, L., López-Vicente, M., Lucas-Borja, M. E., Märker, M., Matthew, F., Miao, C., Mikoš, M., Modugno, S., Möller, M., Naipal, V., Nearing, M., Owusu, S., Panday, D., Patault, E., Patriche, C. V., Poggio, L., Portes, R., Quijano, L., Rahdari, M. R., Renima, M., Ricci, G. F., Rodrigo-Comino, J., Saia, S., Samani, A. N., Schillaci, C., Syrris, V., Kim, H. S., Spinola, D. N., Oliveira, P. T., Teng, H., Thapa, R., Vantas, K., Vieira, D., Yang, J. E., Yin, S., Zema, D. M., Zhao, G., Panagos, P. 2021: Soil erosion modelling: A global review and statistical analysis. Science of The Total Environment 780. DOI: https://doi.org/10.1016/j.scitotenv.2021.146494

Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Van Oost, K., Montanarella, L., Panagos, P. 2017: An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications 8. DOI: https://doi.org/10.1038/s41467-017-02142-7

Bosco, C., de Rigo, D., Dewitte, O., Poesen, J., Panagos, P. 2015: Modelling soil erosion at European scale: Towards harmonization and reproducibility. Natural Hazards and Earth System Sciences 15-2. DOI: https://doi.org/10.5194/nhess-15-225-2015

Cohen, J. 1988. Statistical power analysis for the behavioral sciences. New York.

Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions. Thematic Strategy for Soil Protection. Commission of the European communities. Internet: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52006DC0231&from=EN (14. 9. 2021)

Constantin, D. M., Vătămanu, V. V. 2015: Considerations upon the dryness and drought phenomena in the Caracal plain, Romania. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development 15-1.

Costea, M. 2012: Using the Fournier Indexes in estimating rainfall erosivity. Case study - The Secaşul Mare Basin. Air and Water Components of the Environment Conference. Cluj-Napoca.

da Silva, A. M. 2004: Rainfall erosivity map for Brazil. Catena 57-3. DOI: https://doi.org/10.1016/j.catena.2003.11.006

De Luis, M., Gonzáles-Hidalgo, J. C., Bruneti, M., Longares, L. A. 2011: Precipitation concentration changes in Spain 1946–2005. Natural Hazards and Earth System Sciences 11. DOI: https://doi.org/10.5194/nhess-11-1259-2011

De Luis, M., González-Hidalgo, J. C., Longares, L. A. 2010: Is rainfall erosivity increasing in the Mediterranean Iberian Peninsula? Land Degradation and Development 21-2. DOI: https://doi.org/10.1002/ldr.918

Dehghani, M., Salehi, S., Mosavi, A., Nabipour, N., Shamshirband, S., Ghamisi, P. 2020: Spatial analysis of seasonal precipitation over Iran: Co-variation with climate indices. International Journal of Geo-Information 9-2. DOI: https://doi.org/10.3390/ijgi9020073

Diodato, N., Bellocchi, G. 2007: Estimating monthly (R) USLE climate input in a Mediterranean region using limited data. Journal of Hydrology 345-3,4. DOI: https://doi.org/10.1016/j.jhydrol.2007.08.008

Dragotă, C. S., Grigorescu, I., Dumitraşcu, M., Kucsicsa, G. 2014: Pluvial hazards assessment in the Danube floodplain. The Calafat–Turnu Măgurele sector. Problems of Geography 1-2.

Dragotă, C. S., Micu, M., Micu, D. 2008: The relevance of pluvial regime for landslides genesis and evolution. Case study: Muscel basin (Buzău Subcarpathians), Romania. Present Environment and Sustainable Development 2.

Dumitraşcu, M., Dragotă, C. S., Grigorescu, I., Dumitraşcu, C., Vlădut. A. 2017: Key pluvial parameters in assessing rainfall erosivity in the south-west development region, Romania. Journal of Earth System Science 126. DOI: https://doi.org/10.1007/s12040-017-0834-y

Ferk, M., Ciglič, R., Komac, B., Lóczy, D. 2020: Management of small retention ponds and their impact on flood hazard prevention in the Slovenske Gorice Hills. Acta geographica Slovenica 60-1. DOI: https://doi.org/10.3986/AGS.7675

Fournier, F. 1960: Climat et erosion, la relation entre i’erosion du sol par i’eau et les precipitations atmosphereques. Paris.

Gabriels, D. 2001: Rain erosivity in Europe. Man and soil in the third millenium. Logrono.

Gavrilov, M. B., Lazić, L., Milutinović, M., Gavrilov, M. M. 2011: Influence of hail suppression on the hail trend in Vojvodina, Serbia. Geographica Pannonica 15-2.

Gavrilov, M. B., Marković, S. B., Jarad, A., Korać, V. M. 2015: The analysis of temperature trends in Vojvodina (Serbia) from 1949 to 2006. Thermal Science 19-2. DOI: https://doi.org/10.2298/TSCI150207062G

Gavrilov, M. B., Marković, S. B., Zorn, M., Komac, B., Lukić, T., Milošević, M., Janićević, S. 2013: Is hail suppression useful in Serbia? General review and new results. Acta geographica Slovenica 53-1. DOI: https://doi.org/10.3986/AGS53302

Gavrilov, M. B., Radaković, M. G., Sipos, G., Mezősi, G., Gavrilov, G., Lukić, T., Basarin, B., Benyhe, B., Fiala, K., Kozák, P., Perić, Z. M., Govedarica, D., Song, Y., Marković, S. B. 2020: Aridity in the Central and Southern Pannonian Basin. Atmosphere 11-12. DOI: https://doi.org/10.3390/atmos11121269

Gavrilov, M. B., Tošić, I., Marković, S. B., Unkašević, M., Petrović, P. 2016: Analysis of annual and seasonal temperature trends using the Mann-Kendall test in Vojvodina, Serbia. Időjárás 120-2.

Gavrilov, M.B., Lukić, T., Janc, N., Basarin, B., Marković, S. B. 2019: Forestry Aridity Index in Vojvodina, North Serbia. Open Geosciences 11-1. DOI: https://doi.org/10.1515/geo-2019-0029

Gavrilović, S. 1972: Inženjering o bujičnim tokovima i eroziji. Beograd.

Gilbert, R. O. 1987: Statistical methods for environmental pollution monitoring. New York.

Gocić, M., Trajković, S. 2013: Analysis of precipitation and drought data in Serbia over the period 1980–2010. Journal of Hydrology 494. DOI: https://doi.org/10.1016/j.jhydrol.2013.04.044

Hernando, D., Romana, M. G. 2015: Estimating the rainfall erosivity factor from monthly precipitation data in the Madrid Region (Spain). Journal of Hydrology and Hydromechanics 63-1. DOI: https://doi.org/10.1515/johh-2015-0003

Hrnjak, I., Lukić, T., Gavrilov, M. B., Marković, S. B., Unkašević, M., Tošić, I. 2014: Aridity in Vojvodina, Serbia. Theoretical and Applied Climatology 115. DOI: https://doi.org/10.1007/s00704-013-0893-1

Hrvatin, M., Ciglič, R., Lóczy, D., Zorn, M. 2019: Določanje erozije v gričevjih severovzhodne Slovenije z Gavrilovićevo enačbo. Geografski vestnik 91-2. DOI: https://doi.org/10.3986/GV91206

Hudson, N. W. 1976: Soil conservation. London.

Hurrell, J. W., Kushnir, Y., Visbeck, M., Ottersen, G. 2003. An Overview of the North Atlantic Oscillation. Climatic Significance and Environmental Impact. Washington D. C.

Internet 1: https://crudata.uea.ac.uk/cru/data/nao/ (7. 4. 2020).

Internet 2: https://www.esrl.noaa.gov/psd/ ENSO/MEI/table.html (7. 4. 2020).

Iskander, S. M., Rajib, M. A., Rahman, M. M. 2014: Trending regional precipitation distribution and intensity: Use of climatic indices. Atmospheric and Climate Sciences 4-3. DOI: https://doi.org/10.4236/acs.2014.43038

Kendall, M. 1938: A new measure of rank correlation. Biometrika 30.

Kendall, M. G. 1975: Rank correlation methods. London.

Kirkby, M. J., Neale, R. H. 1987: A soil erosion model incorporating seasonal factors. Chichester.

Komac, B., Zorn, M. 2005: Soil erosion on agricultural land in Slovenia – Measurements of rill erosion in the Besnica valley. Acta geographica Slovenica DOI: 45-1. https://doi.org/10.3986/AGS45103

Lal, R. 1976: Soil erosion on Alfisols in Western Nigeria: III. Effects of rainfall characteristics. Geoderma 16-5. DOI: https://doi.org/10.1016/0016-7061(76)90003-3

Leger, M. 1990: Loess landforms. Quaternary International 7-8. DOI: https://doi.org/10.1016/1040-6182(90)90038-6

Loureiro, N. D., Coutinho, M. D. 2001: A new procedure to estimate the RUSLE EI30 index, based on monthly rainfall data and applied to the Algarve region, Portugal. Journal of Hydrology 250-1,4. DOI: https://doi.org/10.1016/S0022-1694(01)00387-0

Lujan, D. L., Gabriels, D. 2005: Assessing the rain erosivity and rain distribution in different agro-climatological zones in Venezuela. Sociedade and Natureza 1-1.

Lukić, T., Bjelajac, D., Fitzsimmons, K. E., Marković, S. B., Basarin, B., Mlađan, D., Micić, T., Schaetzl, J. R., Gavrilov, M. B., Milanović, M., Sipos, G., Mezősi, G., Knežević Lukić, N., Milinčić, M., Létal, A., Samardžić, I. 2018: Factors triggering landslide occurrence on the Zemun loess plateau, Belgrade area, Serbia. Environmental Earth Sciences 77. DOI: https://doi.org/10.1007/s12665-018-7712-z

Lukić, T., Gavrilov, M. B., Marković, S. B., Komac, B., Zorn, M., Mlađan, D., Đorđević, J., Milanović, M., Vasiljević, Dj. A., Vujičić, M. D., Kuzmanović, B., Prentović, R. 2013: Classification of natural disasters between the legislation and application: Experience of the Republic of Serbia. Acta geographica Slovenica 53-1. DOI: https://dx.doi.org/ 10.3986/AGS53301

Lukić, T., Leščešen, I., Sakulski, D., Basarin, B., Jordaan, A. 2016: Rainfall erosivity as an indicator of sliding occurrence along the southern slopes of the Bačka loess plateau: A case study of the Kula settlement, Vojvodina (North Serbia). Carpathian Journal of Earth and Environmental Sciences 11-2.

Lukić, T., Lukić, A., Basarin, B., Micić Ponjiger, T., Blagojević, D., Mesaroš, M., Milanović, M., Gavrilov, M. B., Pavić, D., Zorn, M., Komac, B., Miljković, Đ., Sakulski, D., Babić-Kekez, S., Morar, C., Janićević, S. 2019: Rainfall erosivity and extreme precipitation in the Pannonian basin. Open Geosciences 11-1. DOI: https://doi.org/10.1515/geo-2019-0053

Lukić, T., Marić, P., Hrnjak, I., Gavrilov, M. B., Mladjan, D., Zorn, M., Komac, B., Milošević, Z., Marković, S. B., Sakulski, D., Jordaan, A., Đorđević, J., Pavić, D., Stojsavljević, R. 2017: Forest fire analysis and classification based on a Serbian case study. Acta geographica Slovenica 57-1. DOI: https://doi.org/10.3986/AGS.918

Lukić, T., Marković, S. B., Stevens, T., Vasiljević, Dj. A., Machalett, B., Milojković, N., Basarin, B. Obreht, I. 2009: The loess cave near the village of Surduk - an unusual pseudokarst landform in the loess of Vojvodina, Serbia. Acta Carsologica 38-2,3. DOI: https://doi.org/10.3986/ac.v38i2-3.124

Luković, J., Blagojević, D., Kilibarda, M., Bajat, B. 2015: Spatial pattern of North Atlantic Oscillation impact on rainfall in Serbia. Spatial Statistics 14-A. DOI: https://doi.org/10.1016/j.spasta.2015.04.007

Lung, T., Hilden, M. 2017: Multi-sectoral vulnerability and risks: Socioeconomic scenarios for Europe. Climate Change, Impacts and Vulnerability in Europe 2016. An indicator-based report. Luxembourg.

Malinović-Milićević, S., Mihailović, D. T., Radovanović, M. M., Drešković, N. 2018. Extreme precipitation indices in Vojvodina Region (Serbia). Journal of the Geographical Institute Jovan Cvijić SASA 68-1. DOI: https://doi.org/10.2298/IJGI1801001M

Maracchi, G., Sirotenko, O., Bindi, M. 2005: Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Europe. Increasing Climate Variability and Change. Dordrecht. DOI: https://doi.org/10.1007/1-4020-4166-7_6

Marković, S. B., Bokhorst, M., Vandenberghe, J., Oches, E. A., Zöller, L., McCoy, W. D., Gaudenyi, T., Jovanović, M., Hambach, U., Machalett, B. 2008: Late Pleistocene loess-palaeosol sequences in the Vojvodina region, north Serbia. Journal of Quaternary Science 23-1. DOI: https://doi.org/10.1002/jqs.1124

Marković, S. B., Hambach, U., Stevens, T., Jovanović, M., O'Hara-Dhand, K., Basarin, B., Lu, H., Smalley, I., Buggle, B., Zech, M., Svirčev, Z., Sümegi, P., Milojković N., Zöller, L. 2012: Loess in the Vojvodina region (Northern Serbia): An essential link between European and Asian Pleistocene environments. Netherlands Journal of Geosciences 91-1,2. DOI: https://doi.org/10.1017/S0016774600001578

Marković, S. B., Stevens, T., Kukla, G. J., Hambach, U., Fitzsimmons, K. E., Gibbard, P., Buggle, B., Zech, M., Guo, Z., Hao, Q., Wu, H., O'Hara Dhand, K., Smalley, I. J., Újvári, G., Sümegi, P., Timar-Gabor, A., Veres, D., Sirocko, F., Vasiljević, Dj. A., Jary, Z., Svensson, A., Jović, V., Lehmkuhl, F., Kovács, J., Svirčev, Z. 2015: Danube loess stratigraphy - Towards a pan-European loess stratigraphic model. Earth-Science Reviews 148. DOI: https://doi.org/10.1016/j.earscirev.2015.06.005

Martínez-Casasnovas, J. A., Ramos, M. C., Ribes-Dasi, M. 2002: Soil erosion caused by extreme rainfall events: Mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma 105-1,2. DOI: https://doi.org/10.1016/S0016-7061(01)00096-9

Mello, C. R., Viola, M. R., Beskow, S., Norton, L. D. 2013: Multivariate models for annual rainfall erosivity in Brazil. Geoderma 202, 203. DOI: http://dx.doi.org/10.1016/j.geoderma.2013.03.009

Meteorološki godišnjak 1946–2014. Republički hidrometeorološki zavod. Beograd. Internet: http://www.hidmet.gov.rs/latin/meteorologija/klimatologija_godisnjaci.php (12. 5. 2021).

Mezősi, G., Bata, T. 2016: Estimation of the changes in the rainfall erosivity in Hungary. Journal of Environmental Geography 9-3,4. DOI: https://doi.org/10.1515/jengeo-2016-0011

Milanović, M. M, Micić, T., Lukić, T., Nenadović, S. S., Basarin, B., Filipović, D., Tomić, M., Samardžić, I., Srdić, Z., Nikolić, G., Ninković, M. M., Sakulski, D., Ristanović, B. 2019: Application of Landsat-derived NDVI in monitoring and assessment of vegetation cover changes in Central Serbia. Carpathian Journal of Earth and Environmental Sciences 14-1. DOI: http://dx.doi.org/10.26471/cjees/2019/014/064

Morgan, R. P. C. 2005: Soil erosion and conservation. Oxford.

Nearing, M. A., Yin, S-q., Borrelli, P., Polyakov, V. O. 2017: Rainfall erosivity: An historical review. Catena 157. DOI: https://doi.org/10.1016/j.catena.2017.06.004

Oduro-Afriyie, K. 1996: Rainfall erosivity map for Ghana. Geoderma 74-1,2. DOI: https://doi.org/10.1016/S0016-7061(96)00054-7

Onchev, N. G. 1985: Universal index for calculating rainfall erosivity. Soil Erosion and Conservation. Ankeny.

Panagos, P., Ballabio, C., Borrelli, P., Meusburger, K., Klik, A., Rousseva, S., Perčec Tadić, M., Michaelides, S., Hrabalíková, M., Olsen, P., Aalto, J., Lakatos, M., Rymszewicz, A., Dumitrescu, A., Beguería, S., Alewell, C. 2015a: Rainfall erosivity in Europe. Science of The Total Environment 511. DOI: https://doi.org/10.1016/j.scitotenv.2015.01.008

Panagos, P., Borrelli, P., Meusburger, K., Yu, B., Klik, A., Lim, K. J., Yang, J. E, Ni, J., Miao, C., Chattopadhyay, N., Sadeghi, S. H., Hazbavi, Z., Zabihi, M., Larionov, G. A., Krasnov, S. F., Garobets, A., Levi, Y., Erpul, G., Birkel, C., Hoyos, N., Naipal, V., Oliveira, P. T. S., Bonilla, C. A., Meddi, M., Nel, W., Dashti, H., Boni, M., Diodato, N., Van Oost, K., Nearing, M. A., Ballabio, C. 2017: Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Scientific Reports 7. DOI: https://doi.org/10.1038/s41598-017-04282-8

Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., Alewell, C. 2015b: The new assessment of soil loss by water erosion in Europe. Environmental Science and Policy 54. DOI: https://doi.org/10.1016/j.envsci.2015.08.012

Pompa-García, M., Némiga, X. A. 2015: ENSO index teleconnection with seasonal precipitation in a temperate ecosystem of northern Mexico. Atmósfera 28-1. DOI: https://doi.org/10.1016/S0187-6236(15)72158-2

Radaković, M. G., Tošić, I., Bačević, N., Mladjan, D., Gavrilov, M. B., Marković, S. B. 2018: The analysis of aridity in Central Serbia from 1949 to 2015. Theoretical and Applied Climatology 133. DOI: https://doi.org/10.1007/s00704-017-2220-8

Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., Yoder, D. C. 1997: Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Washington D.C.

Renard, K.G, Freimund, J.R. 1994: Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of Hydrology 157-1,2,3,4. DOI: https://doi.org/10.1016/0022-1694(94)90110-4

Sanchez-Moreno, J. F., Mannaerts, C. M., Jetten, V. 2014: Rainfall erosivity mapping for Santiago Island, Cape Verde. Geoderma 217,218. DOI: https://doi.org/10.1016/j.geoderma.2013.10.026

Santos Telles, T., de Fátima Guimarães, M., Falci Dechen, S. C. 2011: The costs of soil erosion. Revista Brasileira de Ciência do Solo 35-2. DOI: https://doi.org/10.1590/S0100-06832011000200001

Šmid Hribar, M., Geršič, M., Pipan, P., Repolusk, P., Tiran, J., Topole, M., Ciglič, R. 2017: Cultivated terraces in Slovenian landscapes. Acta geographica Slovenica 57-2. DOI: https://doi.org/10.3986/AGS.4597

Stroosnijder, L. 2005: Measurement of erosion: Is it possible? Catena 64-2,3. DOI: https://doi.org/10.1016/j.catena.2005.08.004

Tošić, I., Hrnjak, I., Gavrilov, M. B., Unkašević, M., Marković, S. B., Lukić, T. 2014: Annual and seasonal variability of precipitation in Vojvodina, Serbia. Theoretical and Applied Climatology 117. DOI: https://doi.org/10.1007/s00704-013-1007-9

Trigo, M. R., Pozo-Vazquez, D., Osborn, J. T., Castro-Diez, Y., Gamiz-Fortis, S., Esteban-Parra, J. M. 2004: North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. International Journal of Climatology 24-8. DOI: https://doi.org/10.1002/joc.1048

Ufoegbune, G. C., Bello, N. J., Ojekunle, Z. O., Orunkoye, A. R., Eruola, A. O., Amori, A. A. 2011: Rainfall erosivity pattern of Ogun River basin area (Nigeria) using Modified Fournier Index. European Water 35.

Vasiljević, Dj. A., Marković, S. B., Hose, T. A., Smalley, I., O'Hara Dhand, K., Basarin, B., Lukić, T., Vujičić, M. D. 2011: Loess towards (geo) tourism - Proposed application on loess in Vojvodina region (North Serbia). Acta geographica Slovenica 51-2. DOI: https://doi.org/10.3986/AGS51305

Wischmeier, W. H., Smith, D. D. 1978: Predicting rainfall erosion losses: A guide to conservation planning. Washington D. C.

Yu, B. 1998: Rainfall erosivity and its estimation for Australia’s tropics. Australian Journal of Soil Research 36-1.

Yu, B., Neil, D. T. 2000: Empirical catchment-wide rainfall erosivity models for two rivers in the humid tropics of Australia. Australian Geographer 31-1. DOI: https://doi.org/10.1080/00049180093565

Yue, B. J., Shi, Z. H., Fang, N. F. 2014: Evaluation of rainfall erosivity and its temporal variation in the Yanhe River catchment of the Chinese Loess Plateau. Natural Hazards 74. DOI: https://doi.org/10.1007/s11069-014-1199-z

Yue, S., Pilon, P., Phinney, B., Cavadias, G. 2002: The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes 16-9. DOI: https://doi.org/10.1002/hyp.1095

Zorn, M. 2015: Erozija prsti – prezrt okoljski problem. Geografski obzornik 63-2,3.

Zorn, M., Komac, B. 2013a: Erosion. Encyclopedia of Natural Hazards. Dordrecht. DOI: https://doi.org/10.1007/978-1-4020-4399-4_120

Zorn, M., Komac, B. 2013b: Land degradation. Encyclopedia of Natural Nazards. Dordrecht. DOI: https://doi.org/10.1007/978-1-4020-4399-4_207

Published
2021-10-27
How to Cite
1.
Lukić T, Micić PonjigerT, BasarinB, SakulskiD, GavrilovM, Marković S, Zorn M, KomacB, MilanovićM, PavićD, MesarošM, MarkovićN, DurlevićU, Morar C, Petrović A. Application of Angot precipitation index in the assessment of rainfall erosivity: Vojvodina Region case study (North Serbia). AGS [Internet]. 2021Oct.27 [cited 2021Nov.30];61(2):123-5. Available from: https://ojs.zrc-sazu.si/ags/article/view/8754