The impact of large dams on fluvial sedimentation: The Iron Gates Reservoir on the Danube River

  • Constantin Nistor University of Bucharest, Faculty of Geography, Department of Geomorphology, Pedology, and Geomatics, Bucharest, Romania
  • Ionuț Săvulescu University of Bucharest, Faculty of Geography, Department of Geomorphology, Pedology, and Geomatics, Bucharest, Romania
  • Bogdan-Andrei Mihai University of Bucharest, Faculty of Geography, Department of Geomorphology, Pedology, and Geomatics, Bucharest, Romania
  • Liliana Zaharia University of Bucharest, Faculty of Geography, Department of Meteorology and Hydrology, Bucharest, Romania
  • Marina Vîrghileanu University of Bucharest, Faculty of Geography, Department of Geomorphology, Pedology, and Geomatics, Bucharest, Romania
  • Sorin Carablaisă University of Bucharest, Orșova Geographical Research Station Center, Bucharest, Romania
Keywords: hydropower dam, Iron Gates reservoir, sedimentation, topography, Cerna Gulf, Danube River


Dam construction is one of the major human pressures impacting fluvial processes, including topography and hydro-sedimentary flows, as a result of the change in flow regime from fluvial to fluvial-lacustrine. This article investigates geomorphic changes at Iron Gates I, the largest reservoir on the Danube River, completed in 1972 for hydropower and navigation. The study focuses on a gulf area that emerged at the mouth of the Cerna River into the reservoir, highlighting spatial changes in topography and sediment distribution, based on a diachronic analysis of two datasets before and after the dam was built: one extracted from historical topographic maps and the other obtained from a bathymetric echo sounding survey, integrated within a GIS analysis. The results reveal the dominance of the sedimentation process, with an alluvium layer thickness up to 14 m. The current sediment pattern has changed the submerged morphology, leading to the formation of an alluvial fan at the mouth of the Cerna River and of a sedimentary bar between the Cerna Gulf and the Danube River’s channel. The siltation process together with the current underwater morphology limits ship traffic and the storage capacity of the reservoir.


Download data is not yet available.


Allison, M. A., Demas, C. R., Ebersole, B. A., Kleiss, B. A., Little, C. D., Meselhe, E. A., Powell, N. J., Pratt, T. C., Vosburg, B. M. 2012: A water and sediment budget for the lower Mississippi–Atchafalaya River in flood years 2008–2010: Implications for sediment discharge to the oceans and coastal restoration in Louisiana. Journal of Hydrology 432-433. DOI:

Aquaproiect. Atlasul Cadastrului apelor din România. Bucharest, 1992.

Babic Mladenovic, M., Kolarov, Damjanovic, V., Radosavljevic, P. 2017: Comparison of the “natural” and the present sediment regime of the Danube River. Water Research and Management 1-3.

Babic Mladenovic, M., Kolarov, V., Damjanovic, V. 2013: Sediment regime of the Danube River in Serbia. International Journal of Sediment Research 28-4. DOI:

Bentley, S. J., Freeman, A. M., Willson, C. S., Cable, J. E., Giosan, L. 2014: Using what we have: Optimizing sediment management in Mississippi River delta restoration to improve the economic viability of the Nation. Perspectives on the restoration of the Mississippi Delta. Estuaries of the World. Dordrecht. DOI:

Brandt, S. A. 2000: Classification of geomorphological effects downstream of dams. Catena 40-4. DOI:

Čanjevac, I., Orešić, D. 2018: Changes in discharge regimes of rivers in Croatia. Acta geographica Slovenica 58-2. DOI:

Castillo, V. M., Mosch, W. M., García, C. C., Barberá, G. G., Cano, J. A. N., López-Bermúdez, F. 2007: Effectiveness and geomorphological impacts of check dams for soil erosion control in a semiarid Mediterranean catchment: El Cárcavo (Murcia, Spain). Catena 70-3. DOI:

Constantinescu, Ş., Achim, D., Rus, I., Giosan, L. 2015: Embanking the lower danube: From natural to engineered floodplains and back. Geomorphic Approaches to Integrated Floodplain Management of Lowland Fluvial Systems in North America and Europe. New York. DOI:

Diaconu, D. C. 2005: Caracteristici morfologice ale cuvetei Golfului Orșova.Comunicări de Geografie. Bucharest.

Evrad, J., McManus, J., Jobson, H. E., Jiahua, F., Bruk, S. 1985: Methods of computing sedimentation in lake and reservoirs. Belgrade.

Giosan, L., Syvitski, J., Constantinescu, S., Day, J. 2014: Climate change: Protect the world’s deltas. Nature 516-7529. DOI:

Goudie, A. S. 2006: Global warming and fluvial geomorphology. Geomorphology 79-3,4. DOI:

Gu, J., Chen, Z., Salem, A. 2011: Post-Aswan dam sedimentation rate of lagoons of the Nile Delta, Egypt. Environmental Earth Sciences 64. DOI:

Hohensinner, S., Jungwirth, M., Muhar, S., Schmutz, S. 2011: Spatio‐temporal habitat dynamics in a changing Danube River landscape 1812–2006. River Research and Applications 27-8. DOI:

Hrvatin, M., Ciglič, R., Lóczy, D., Zorn, M. 2019: Določanje erozije v gričevjih severovzhodne Slovenije z Gavrilovićevo enačbo. Geografski vestnik 91-2. DOI:

Kantoush, S. A., Sumi, T. 2013: Reservoir sedimentation and sediment management techniques in the Nile River basin countries. Advances in River Sediment Research. Internet: (3. 9. 2020).

Kesel, R. H. 2003: Human modifications to the sediment regime of the Lower Mississippi River flood plain. Geomorphology 56-3,4. DOI:

Li, S., Li, Y., Yuan, J., Zhang, W., Chai, Y., Ren, J. 2018: The impacts of the Three Gorges Dam upon dynamic adjustment mode alterations in the Jingjiang reach of the Yangtze River, China. Geomorphology 318. DOI:

Li, Y., Yang, G., Li, B., Wan, R., Duan, W., He, Z. 2016: Quantifying the effects of channel change on the discharge diversion of Jingjiang Three Outlets after the operation of the Three Gorges Dam. Hydrology Research 47-S1. DOI:

Meade, R. H., Moody, J. A. 2009: Causes for the decline of suspended‐sediment discharge in the Mississippi River system, 1940–2007. Hydrological Processes 24-1. DOI:

Mihai, B., Nistor, C., Toma, L., Săvulescu, I. 2016: High resolution landscape change analysis with CORONA KH-4B imagery. A case study from iron gates reservoir area. Procedia Environmental Sciences 32. DOI:

Netzband, A. 2007: Sediment management: An essential element of river basin management plans. Journal of Soils and Sediments volume 7. DOI:

Oaie, G., Secrieru, D., Bondar, C., Szobotka, Ş., Duţu, L., Stănescu, I., Opreanu, G., Duţu, F., Pojar, I., Manta, T. 2015: Lower Danube river: Characterization of sediments and pollutants. Geo-Eco-Marina 21.

Panin, N., Jipa, D. 1998: Danube River sediments input and its interaction with the North-Western Black Sea, Geo-Eco-Marina 3. Proceedings of International Workshop on “Continental Margins and Sea Level Changes”.

Panin, N., Jipa, D. 2002: Danube river sediment input and its interaction with the north-western Black Sea. Estuarine, Coastal and Shelf Science 54-3. DOI:

Petkovic, S., Dragovic, N., Markovic, S. 1999: Erosion and sedimentation problems in Serbia. Hydrological Sciences Journal 44-1. DOI:

Pop, G. 1996: România, geografie hidroenergetică. Cluj-Napoca.

Posea, G., Grigore, M., Popescu, N. 1976: Terraces and leveling surfaces. The “Iron Gate” complex atlas. Bucharest.

Rădoane, M., Rădoane, N. 2005: Dams, sediment sources and reservoir silting in Romania. Geomorphology 71-1,2. DOI:

Repnik Mah, P., Mikoš, M., Bizjak, A. 2010: Hydromorphological classification of Slovenian rivers. Acta geographica Slovenica 50-2. DOI:

River administration of the lower Danube, 2017. Danube water levels. Internet: (10. 3. 2017).

Romanian army shooting map 1 : 20,000, 2346-Orșova; 2347-Ada Kaleh. Military geographical service. Bucharest, 1939.

Sârbu, I. 2001: Valea Cernei – Caracterizare fizico‑geografica cu privire speciala asupra hidrografiei. PhD. thesis, University of Bucharest. Bucharest.

Șelău, N. 2010: Lacul Porțile de Fier, caracterizare fizico-geografică și funcțională. Scurt istoric. Comunicări de Geografie. Bucharest.

Smith, S., Szilágyi, F., Horváth, L. 2002: Environmental impacts of the Gabcikovo Barrage System to the Szigetköz region. Clean Technologies and Environmental Policy 4. DOI:

Stǎnicǎ, A., Panin, N. 2009: Present evolution and future predictions for the deltaic coastal zone between the Sulina and Sf. Gheorghe Danube river mouths (Romania). Geomorphology 107-1,2. DOI:

Teodoru, C., Wehrli, B. 2005: Retention of sediments and nutrients in the Iron Gate I Reservoir on the Danube River. Biogeochemistry 76. DOI:

Topographic map L-34-117-D-d (Orșova). Military mapping directorate. 1952.

Vespremeanu, E., Posea, A. 1988: Sedimentarea și sedimentele din lacul de acumulare Porțile de Fier I. Probleme de Geomorfologia Românei II. Bucharest.

Vukovic, D., Vukovic, Z., Stankovic, S. 2014: The impact of the Danube Iron Gate Dam on heavy metal storage and sediment flux within the reservoir. Catena 113. DOI:

Yonggui, Y., Xuefa, S., Houjie, W., Chengkun, Y., Shenliang, C., Yanguang, L., Limin, H., Shuqing, Q. 2013: Effects of dams on water and sediment delivery to the sea by the Huanghe (Yellow River): The special role of Water-Sediment Modulation. Anthropocene 3. DOI:

Zahar, Y., Ghorbel, A., Albergel, J. 2008: Impacts of large dams on downstream flow conditions of rivers: Aggradation and reduction of the Medjerda channel capacity downstream of the Sidi Salem dam (Tunisia). Journal of Hydrology 351-3,4. DOI:

Zaharia, L. 2008: Impactul lacului de acumulare Porțile de Fier I asupra morfodinamicii malului și a versantului românesc. Comunicări de Geografie. Bucharest.

Zaharia, L. 2010: The iron gates reservoir: Aspects concerning hydrological characteristics and water quality. Lakes Reservoirs and Ponds 4-1.

Zaharia, L., Grecu, F., Ioana-Toroimac, G., Neculau, G. 2011: Sediment transport and river channel dynamics in Romania: Variability and control factors. Sediment Transport in Aquatic Environments. DOI:

Zaharia, L., Ioana-Toroimac, G. 2013: Romanian Danube River management: Impact and perspectives. European continental hydrosystems under changing water policy. Munich.

Zhang, W., Yuan, J., Han, J., Huang, C., Li, M. 2016: Impact of the Three Gorges Dam on sediment deposition and erosion in the middle Yangtze River: A case study of the Shashi Reach. Hydrology Research 47-S1. DOI:

Zhou, Y., Zhang, Q., Li, K., Chen, X. 2011: Hydrological effects of water reservoirs on hydrological processes in the East River (China) basin: Complexity evaluations based on the multi-scale entropy analysis. Hydrological Processes 26-21. DOI:

How to Cite
Nistor C, Săvulescu I, MihaiB-A, Zaharia L, Vîrghileanu M, Carablaisă S. The impact of large dams on fluvial sedimentation: The Iron Gates Reservoir on the Danube River. AGS [Internet]. 2021Jul.28 [cited 2021Sep.24];61(1):41–55. Available from: