Množice, velikosti množice in neskončno v Badioujevi Biti in dogodku

Avtorji

  • Tzuchien Tho University of Bristol

DOI:

https://doi.org/10.3986/fv.41.2.07

Ključne besede:

matematična ontologija, ordinalnost, kardinalnost, transfinitna vsota, mejni ordinal, subtraktivna ontologija, numeroznost

Povzetek

Avtor prispevka zagovarja tezo, da Cantorjeva transfinitna kardinalnost ni nujna predpostavka za ontološke trditve iz Badioujeve L’Être et l’Événement (zv. 1). Nujna podlaga za Badioujevo matematično ontologijo v tem delu je bila zgolj ordinalnost množic. Glede metode za ugotavljanje velikosti množic pa je bila zgolj domneva, da sledijo standardni Cantorjevi meri. Upoštevajoč različne prepričljive oblike merjenja nefinitnih množic (kot so jih razvili Benci in Di Nasso ter Mancosu), zagovarjamo stališče, da Badioujev projekt ni neskladen s tem pluralizmom merjenja. Ravno nasprotno, trdimo, da ta pluralizem merjenja implicira, da Badioujevo vztrajanje na »odtegnitvi enega«, nujno za zatrditev brezpogojne biti »nekonsistentnega mnoštva«, vodi v virtualnost enega, pluralizem štetja, s čimer se še bolj zaplete razmerje med enim in mnoštvom v pocantorjevski dobi.

Prenosi

Podatki o prenosih še niso na voljo.

Literatura

Arthur, Richard T.W., “Leibniz’s Syncategorematic Actual Infinite”, in O. Nachtomy, R.

Winegar (eds.), Infinity in Early Modern Philosophy, Springer, Cham 2018, pp. 155–179.

— “Leibniz’s syncategorematic infinitesimals”, Archive for History of Exact Sciences 67

(5/2013), pp. 553–593

Badiou, Alain, L’Être et l’Événement, Seuil, Paris 1988

— Being and Event, trans. O. Feltham, Continuum, London 2005

— “New Horizons in Mathematics as a Philosophical Condition: An Interview with Alain

Badiou [with Tzuchien Tho]”, Parrhesia 3 (2007), pp. 1–11

— Number and Numbers, trans. R. Mackay, Polity Press, Boston 2008

— “Destruction, Negation, Subtraction – On Pier Paolo Pasolini”, Art Center College of

Design in Pasadena, 2007, available at: https://www.lacan.com/badpas.htm

Barwise, Jon, “Situations, Sets and the Axiom of Foundation”, Logic Colloquium 1984,

J.B. Paris, A.J. Wilkie, G.M. Wilmers (eds.), Elsevier Science Publishers, Amsterdam

, pp. 21–36

Benci, Vieri, and Di Nasso, Mauro, “Numerosities of labeled sets: A new way of counting”,

Advances in Mathematics, 173(2003), pp. 50–67

— Benci, Vieri, Di Nasso, Mauro and Forti, Marco, “An Aristotelian notion of size”, Annals

of Pure and Applied Logic, 143 (1-3/2006), pp. 43–53

Bolzano, Bernard, Paradoxien des Unendlichen, C. H. Reclam, Leipzig 1851

— The Paradoxes of the Infinite, trans. D. A.Steele, Routledge, London 1950

Cantor, Georg, “Mitteilungen zur Lehre vom Transfiniten”, Zeitschrift für Philosophie und

philosophische Kritik 91 (1887-1888), pp. 81–125, 240–265

— “Über unendliche, lineare Punktmannichfaltigkeiten”, in E. Zermelo (ed.), Gesammelte

Abhandlungen mathematischen und philosophischen Inhalts. Mit erläuternden

Anmerkungen sowie mit Ergänzungen aus dem Briefwechsel, J. Springer, Berlin 1936;

reprinted Olms, Hildesheim 1966, pp. 165–209

Dedekind, Richard, Essays on the Theory of Numbers, Dover Publications, Mineola 1963

Fraser, Zachary Luke (Lucca Fraser), “The Law of the Subject: Alain Badiou, Luitzen

Brouwer and the Kripkean Analyses of Forcing and the Heyting Calculus”, Cosmos

and History: The Journal of Natural and Social Philosophy 2 (1–2/2006), pp. 94–133

Galileo, Galilei, Discourses and Mathematical Demonstrations Relating to Two New

Sciences, trans. Crew and de Salvio, Dover, New York, pp. 31–37

Jahnke, Hans Niels, “Cantor’s cardinal and ordinal infinities: An epistemological and

didactic view”, Educational Studies in Mathematics (48/2001), pp. 175–197

Kunen, Kenneth, “Ultrafilters and Independent Sets”, Transactions of the American

Mathematical Societies, 172 (1972), pp. 229–306

— Set Theory: An Introduction to Independence Proofs, Elsevier, Amsterdam 1983

Kenneth Kunen, Set Theory, revised edition, College Publications, London 2011

Mancosu, Paolo, “Measuring the size of infinite collections of natural numbers: Was Cantor’s

theory of infinite number inevitable?”, Abstraction and Infinity, Oxford University

Press, Oxford 2015, pp. 116–153

Parker, Matthew, “Set size and part-whole principle”, The Review of Symbolic Logic, 6

(2013), pp. 589–612

Rabouin, David, and Arthur, Richard T. W., “Leibniz’s syncategorematic infinitesimals

II: their existence, their use and their role in the justification of the differential calculus”,

Archive for History of Exact Sciences 74 (5/2020), pp. 401–443

Objavljeno

2020-12-31

Kako citirati

Tho, T. (2020). Množice, velikosti množice in neskončno v Badioujevi Biti in dogodku. Filozofski Vestnik, 41(2). https://doi.org/10.3986/fv.41.2.07

Številka

Rubrike

Model teorije množic v razpravi