Množice, velikosti množice in neskončno v Badioujevi Biti in dogodku
DOI:
https://doi.org/10.3986/fv.41.2.07Ključne besede:
matematična ontologija, ordinalnost, kardinalnost, transfinitna vsota, mejni ordinal, subtraktivna ontologija, numeroznostPovzetek
Avtor prispevka zagovarja tezo, da Cantorjeva transfinitna kardinalnost ni nujna predpostavka za ontološke trditve iz Badioujeve L’Être et l’Événement (zv. 1). Nujna podlaga za Badioujevo matematično ontologijo v tem delu je bila zgolj ordinalnost množic. Glede metode za ugotavljanje velikosti množic pa je bila zgolj domneva, da sledijo standardni Cantorjevi meri. Upoštevajoč različne prepričljive oblike merjenja nefinitnih množic (kot so jih razvili Benci in Di Nasso ter Mancosu), zagovarjamo stališče, da Badioujev projekt ni neskladen s tem pluralizmom merjenja. Ravno nasprotno, trdimo, da ta pluralizem merjenja implicira, da Badioujevo vztrajanje na »odtegnitvi enega«, nujno za zatrditev brezpogojne biti »nekonsistentnega mnoštva«, vodi v virtualnost enega, pluralizem štetja, s čimer se še bolj zaplete razmerje med enim in mnoštvom v pocantorjevski dobi.
Prenosi
Literatura
Arthur, Richard T.W., “Leibniz’s Syncategorematic Actual Infinite”, in O. Nachtomy, R.
Winegar (eds.), Infinity in Early Modern Philosophy, Springer, Cham 2018, pp. 155–179.
— “Leibniz’s syncategorematic infinitesimals”, Archive for History of Exact Sciences 67
(5/2013), pp. 553–593
Badiou, Alain, L’Être et l’Événement, Seuil, Paris 1988
— Being and Event, trans. O. Feltham, Continuum, London 2005
— “New Horizons in Mathematics as a Philosophical Condition: An Interview with Alain
Badiou [with Tzuchien Tho]”, Parrhesia 3 (2007), pp. 1–11
— Number and Numbers, trans. R. Mackay, Polity Press, Boston 2008
— “Destruction, Negation, Subtraction – On Pier Paolo Pasolini”, Art Center College of
Design in Pasadena, 2007, available at: https://www.lacan.com/badpas.htm
Barwise, Jon, “Situations, Sets and the Axiom of Foundation”, Logic Colloquium 1984,
J.B. Paris, A.J. Wilkie, G.M. Wilmers (eds.), Elsevier Science Publishers, Amsterdam
, pp. 21–36
Benci, Vieri, and Di Nasso, Mauro, “Numerosities of labeled sets: A new way of counting”,
Advances in Mathematics, 173(2003), pp. 50–67
— Benci, Vieri, Di Nasso, Mauro and Forti, Marco, “An Aristotelian notion of size”, Annals
of Pure and Applied Logic, 143 (1-3/2006), pp. 43–53
Bolzano, Bernard, Paradoxien des Unendlichen, C. H. Reclam, Leipzig 1851
— The Paradoxes of the Infinite, trans. D. A.Steele, Routledge, London 1950
Cantor, Georg, “Mitteilungen zur Lehre vom Transfiniten”, Zeitschrift für Philosophie und
philosophische Kritik 91 (1887-1888), pp. 81–125, 240–265
— “Über unendliche, lineare Punktmannichfaltigkeiten”, in E. Zermelo (ed.), Gesammelte
Abhandlungen mathematischen und philosophischen Inhalts. Mit erläuternden
Anmerkungen sowie mit Ergänzungen aus dem Briefwechsel, J. Springer, Berlin 1936;
reprinted Olms, Hildesheim 1966, pp. 165–209
Dedekind, Richard, Essays on the Theory of Numbers, Dover Publications, Mineola 1963
Fraser, Zachary Luke (Lucca Fraser), “The Law of the Subject: Alain Badiou, Luitzen
Brouwer and the Kripkean Analyses of Forcing and the Heyting Calculus”, Cosmos
and History: The Journal of Natural and Social Philosophy 2 (1–2/2006), pp. 94–133
Galileo, Galilei, Discourses and Mathematical Demonstrations Relating to Two New
Sciences, trans. Crew and de Salvio, Dover, New York, pp. 31–37
Jahnke, Hans Niels, “Cantor’s cardinal and ordinal infinities: An epistemological and
didactic view”, Educational Studies in Mathematics (48/2001), pp. 175–197
Kunen, Kenneth, “Ultrafilters and Independent Sets”, Transactions of the American
Mathematical Societies, 172 (1972), pp. 229–306
— Set Theory: An Introduction to Independence Proofs, Elsevier, Amsterdam 1983
Kenneth Kunen, Set Theory, revised edition, College Publications, London 2011
Mancosu, Paolo, “Measuring the size of infinite collections of natural numbers: Was Cantor’s
theory of infinite number inevitable?”, Abstraction and Infinity, Oxford University
Press, Oxford 2015, pp. 116–153
Parker, Matthew, “Set size and part-whole principle”, The Review of Symbolic Logic, 6
(2013), pp. 589–612
Rabouin, David, and Arthur, Richard T. W., “Leibniz’s syncategorematic infinitesimals
II: their existence, their use and their role in the justification of the differential calculus”,
Archive for History of Exact Sciences 74 (5/2020), pp. 401–443
Prenosi
Objavljeno
Kako citirati
Številka
Rubrike
Licenca
Avtorji jamčijo, da je delo njihova avtorska stvaritev, da v njem niso kršene avtorske pravice tretjih oseb ali kake druge pravice. V primeru zahtevkov tretjih oseb se avtorji zavezujejo, da bodo varovali interese založnika ter da bodo povrnili morebitno škodo.
Podrobneje v rubriki: Prispevki