Space and Number: Two Ways in Ontology?

Authors

  • David Rabouin (CNRS), the research group SPHERE (UMR 7219, CNRS – Université de Paris)

DOI:

https://doi.org/10.3986/fv.41.2.10

Keywords:

Badiou ontology, Set theory, Category theory, homotopy theory, number, space, history of mathematics

Abstract

In this paper, I pursue a dialogue initiated with the publication of Logiques des mondes on the basis of three main lines of questioning: 1. The first, most immediate one, is the meaning that should be given to the famous motto “mathematics = ontology”. Indeed, it is a different statement to claim that “mathematics is ontology”, as was promoted explicitely by Being and the event, and to say that set theory alone is ontology (as advanced by Logiques des mondes, as well as other contemporary texts). It seems that there is at this point an important inflection of the system, not thematized as such; is set theory a way of expressing ontology, i.e. mathematics, or is it ontology itself? 2. This leads to a broader questioning of the relationship, in mathematics, between expression and ontology, or “language” and “being”. Here I would like to point out that, contrary to what one might think, there is often an ambiguity between these two aspects not only in Badiou, but more generally in discussions of the philosophy of mathematics. If this distinction is relevant - and I will try to show why it should be - then one cannot conclude too quickly from the fact that mathematics has adopted a unified expression thanks to the language of set theory to the fact that the form of being it expresses is set-theoretic (or “pure multiple” in Badiou’s terminology); 3. Finally, I would like to delve into the fact that the set-theoretic language has precisely given rise to the thematization of two orientations which could be just as well coined “ontological” (but in a different sense, therefore, from that given to it by Badiou); the first is anchored in the concept of number, while the other is anchored in the concept space (later called “topological”). The fact that we have a language capable of describing them in a homogeneous fashion does not entail that we are dealing with a single domain of objects. I would like to show that this tension runs through contemporary mathematics, and consequently through Alain Badiou’s thinking more than he wants to admit. In fact, it is at the basis of various attempts proposed in mathematics to arrive at more satisfactory forms of unification than that provided by “sets” alone.

Downloads

Download data is not yet available.

References

André, Yves, Leçons de Mathématiques contemporaines à l’IRCAM, IRCAM, France

, archives ouvertes: https://cel.archives-ouvertes.fr/cel-01359200/document

(consulté le 25 janvier 2020)

Aristote, Seconds Analytiques. Organon IV, trad. fr. P. Pellegrin, GF, Paris 2005

Badiou, Alain, Court traité d’ontologie transitoire, Seuil, Paris 1998

— Deleuze : La clameur de l’être, Hachette Littératures, Paris 1997

— Le concept de modèle, Maspéro, Paris 1969

— L’Être et l’Événement, Seuil, Paris 1988

— l’Immanence des vérités, Fayard, Paris 2018

— « Un, multiple, multiplicité(s) », Futur Antérieur 43 (avril 1998)

Bélanger, M. et J.-P. Marquis, « Menger and Nöbeling on pointless topology », Logic and

Logical Philosophy 22 (2/2013), pp. 145–165.

Bell, J. L., Toposes and local set theories: An introduction, Oxford Logic, Guides: 14,

Clarendon Press, Oxford 1988

— « From Absolute to Local Mathematics », Synthese 69 (3/1986), pp. 409–426

— « Tous ensemble ? Sur le rapport d’Alain Badiou aux mathématiques », dans Autour

d’Alain Badiou, dirs. F. Tarby et I. Vodoz, pp. 81–102, Germina, Paris 2011

Baire, René/Borel, Emile, Lettres de René Baire à Émile Borel, Cahiers du séminaire d’histoire

des mathématiques 11 (1990), pp. 33–120

Borrelli, Vincent, « Gnash, un tore plat ! », Images des Mathématiques, CNRS, 2012, disponible

à: https://images.math.cnrs.fr/Gnash-un-tore-plat.html (consulté le 15 mars

Deleuze, Gilles, Différence et répétition, PUF, Paris 1968

— Spinoza et le problème de l’expression, Les Éditions de Minuit, Paris 1968

Desanti, Jean-Toussaint, « Quelques remarques à propos de l’ontologie intrinsèque

d’Alain Badiou », Les Temps Modernes 45 (526/1990), pp. 61–71

Euclide, Les Éléments, trad. fr. Bernard Vitrac, PUF, Paris, 1990-2001

Rabouin, David, « Objet, relation, transcendantal. Une introduction au formalisme de

Logiques des mondes » dans Autour de « Logiques des mondes », dirs. D. Rabouin, O.

Feltham et L. Lincoln, Editions des Archives contemporaines, Paris 2011

Ferreirós, José, Labyrinth of Thought: A History of Set Theory and Its Role in Modern

Mathematics, Birkhäuser, Basel-Boston-Berlin 1999

Gispert, Hélène, « La théorie des ensembles en France avant la crise de 1905 : Baire,

Borel, Lebesgue... et tous les autres », Revue d’histoire des mathématiques 1 (1/1995),

pp. 39–81

Grothendieck, Alexander, Récoltes et Semailles, disponible à: https://webusers.imj-prg.

fr/~leila.schneps/grothendieckcircle/recoltesetc.php

Guitart, René, « Caractère global et caractère local de la vérité », conférence donnée à la

Lysimaque, 23 septembre 1990, disponible sur le site de l’auteur : http://rene.guitart.

pagesperso-orange.fr/preprints.html

Halimi, Brice, « Sets and Descent », dans Objectivity, Realism and Proof, dirs. A. Sereni

& F. Boccuni, pp. 123–142, Springer, Basel 2016

Kant, Emmanuel, Correspondance, Vrin, Paris 1991

Kantor, Jean-Michel et Loren Graham, Au nom de l’infini, Éditions Belin, Paris 2010

Klein, Jacob, « Die griechische Logistik und die Entstehung der Algebra (1934/1936) »,

dans Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik,

Abteilung B: Studien. Band 3, Erstes Heft, pp. 18–105, Springer, Berlin 1934

— Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik, Zweites

Heft, pp. 122–235, Springer, Berlin 1936

Mac Lane, Saunders et Ieke Moerdijk, Sheaves in Geometry and Logic. A First introduction

in topos theory, Springer-Verlag, New York 1992

Marquis, Jean-Pierre, « Mathematical forms and forms of mathematics: leaving the

shores of extensional mathematics », Synthese 190 (2013) pp. 2141–2164

Niccolò Guicciardini, Isaac Newton on Mathematical Certainty and Method, MIT Press,

Cambridge, Massachusetts 2009

Putnam, Hilary, « Langage et réalité [1975] », dans Textes clés de philosophie des sciences,

Vol. 2, dirs. S. Laugier et P. Wagner, pp. 61–104, Vrin, Paris 2004

— « Explication et référence » dans De Vienne à Cambridge, dir. P. Jacob, Gallimard,

Paris 1980, pp. 337–365

— « What is Mathematical Truth? », dans Hilary Putnam, Mathematics, Matter and

Method. Philosophical Papers, vol. 1, pp. 60–78, Cambridge University Press, Cambridge

Rabouin, David, « Un calcul différentiel des idées ? Note sur le rapport de Deleuze aux

mathématiques », Revue Europe 996 (avril 2012), pp.140–153

Roy, Jean-Michel, Écrits de logique philosophique, PUF, Paris 1989, pp. 203–218

Riemann, B., « Sur les hypothèses qui servent de fondement à la géométrie », OEuvres

mathématiques, trad. Laugel, Gauthier-Villars, Paris 1898

Russell, Bertrand, « On denoting », Mind 14 (56/1905), pp. 479–493

Stewart Shapiro, Foundations without Foundationalism: A Case for Second-Order Logic,

Oxford University Press, Oxford 1991

Stevin, Simon, Arithmétique, (1585) », dans The Principal Works of Simon Stevin, dirs.

E. Crone, E.J. Dijksterhuis, R.J. Forbes et al., 6 vol., t. 2 B, N. V. Swets & Zeitlinger,

Amsterdam 1955–1966

Toën, Bertrand, « Derived algebraic geometry », EMS Survey in Mathematical Sciences

(2014), pp. 153–240

— Homotopical and Higher Categorical Structures in Algebraic Geometry, arXiv:-

math/0312262 (consulté le 16 mars 2020)

Veilahti, Antti, « Alain Badiou’s Mistake. Two Postulates of Dialectic Materialism »,

arXiv: 1301.1203, displonible à: https://arxiv.org/abs/1301.1203 (consulté le 15 mars

Wilson, Mark, « Frege: The Royal Road From Geometry », Noûs 26 (2/1992), pp. 149–180.

Published

2020-12-31

How to Cite

Rabouin, D. (2020). Space and Number: Two Ways in Ontology?. Filozofski Vestnik, 41(2). https://doi.org/10.3986/fv.41.2.10

Issue

Section

“Seeing” and “Saying”: Set Theory / Category Theory