Dinamika CO2 in temperature med vrhuncem turistične sezone v Lepih jamah (Postojnska jama, Slovenija)
DOI:
https://doi.org/10.3986/ac.v54i2.14931Ključne besede:
kras, jamska mikroklima, turistična jama, ogljikov dioksid, monitoring jamPovzetek
V članku obravnavamo meritve koncentracije CO₂ in temperature zraka med vrhuncem turistične sezone leta 2017 v Lepih jamah – razmeroma slabo prezračenem rovu Postojnske jame, skozi katerega je dnevno prehajalo med 5500 in 6500 obiskovalcev. Oba parametra kažeta izrazita dnevna nihanja, ki so večinoma posledica prisotnosti obiskovalcev. Analiziramo tudi vpliv dodatnega prezračevanja z odprtjem umetnega tunela, ki povezuje Postojnsko jamo s Črno jamo. Ta ukrep učinkovito preprečuje prekomerno kopičenje CO₂ ob dneh, ko bi bile zaradi zunanjih vremenskih razmer in velikega števila obiskovalcev sicer pričakovane visoke koncentracije, a je z vidika vpliva na klimo Črne jame nesprejemljiv. Čeprav sta koncentracija CO₂ in temperatura medsebojno povezana, se krivulji njunega naraščanja in upadanja pomembno razlikujeta. Temperatura se ob prihodu obiskovalcev hitro zviša, njen upad po zaključku obiskov pa je počasnejši kot pri CO₂. Zakasnitev pripisujemo izmenjavi toplote z jamskimi stenami – toplota, ki jo oddajajo obiskovalci, se čez dan shranjuje v stenah in ponoči prehaja nazaj v jamo.
Prenosi
Literatura
Covington, M. D., Perne, M., 2016. Consider a Cylindrical Cave: A Physicist’s View of Cave and Karst Science. Acta Carsologica ,44 (3). https://doi.org/10.3986/ac.v44i3.1925
Covington, M. D., Prelovšek, M., Gabrovšek, F., 2013. Influence of CO2 Dynamics on the Longitudinal Variation of Incision Rates in Soluble Bedrock Channels: Feedback Mechanisms. Geomorphology, 186: 85–95. https://doi.org/10.1016/j.geomorph.2012.12.025
European Union, 2024. Directive (EU) 2024/2881 of the European Parliament and of the Council of 23 October 2024 on Ambient Air Quality and Cleaner Air for Europe (Recast). http://data.europa.eu/eli/dir/2024/2881/oj/eng [Accessed 10 November 2025]
Field, M. S., 1999. A Lexicon Of Cave And Karst Terminology With Special Reference To Environmental Karst Hydrology (1999 Edition). U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Washington Office. https://cfpub.epa.gov/ncea/risk/era/recordisplay.cfm?deid=12468
Gabrovšek, F., 2023. How Do Caves Breathe: The Airflow Patterns in Karst Underground. PLOS ONE, 18 (4): e0283767. https://doi.org/10.1371/journal.pone.0283767
Gabrovšek, F., Grašič, B., Zlata Božnar m., Udén, M., Davies ., 2014. Karst Show Caves: How DTN Technology as Used in Space Assists Automatic Environmental Monitoring and Tourist Protection-Experiment in Postojna Cave. Natural Hazards and Earth System Sciences, 14 (2): 443–57. https://doi.org/10.5194/nhess-14-443-2014
Hardy, J. D., DuBois, E. F., 1937. Regulation of Heat Loss from the Human Body. Proceedings of the National Academy of Sciences, 23(12): 624–31. https://doi.org/10.1073/pnas.23.12.624
Kilpatrick, F. A., Cobb, E.D., 1985. Measurement of Discharge Using Tracers. U.S. In: Geological Survey Techniques of Water-Resources Investigations, book 3, chap. A16. US Geological Survey.
Küçükhüseyin, Ö., 2021. CO₂ Monitoring and Indoor Air Quality. The REHVA European HVAC Journal, 58 (1): 54–59.
Kukuljan, L., Gabrovšek, F., Covington, M.D., Johnston, V.E., 2021a. CO2 Dynamics and Heterogeneity in a Cave Atmosphere: Role of Ventilation Patterns and Airflow Pathways. Theoretical and Applied Climatology, 146 (1): 91–109. https://doi.org/10.1007/s00704-021-03722-w
Kukuljan, L., Gabrovšek, F., Johnston, V.E.,2021b. Low-Calcium Cave Dripwaters in a High CO2 Environment: Formation and Development of Corrosion Cups in Postojna Cave, Slovenia. Water, 13 (22): 3184. https://doi.org/10.3390/w13223184
LibreTexts,2025. Avogadro’s Hypothesis and Molar Volume. Chemistry LibreTexts. https://chem.libretexts.org/@go/page/53770 [Accessed 10 November 2025].
Lowther, S.D., Dimitroulopoulou, S., Foxall, K., 2021. Low Level Carbon Dioxide Indoors—A Pollution Indicator or a Pollutant? A Health-Based Perspective. Environments, 8 (11): 125. https://doi.org/10.3390/environments8110125
Luhmann, A. J., Covington, M. D., Myre, J. M. , Perne, M., Jones, S.W., Alexander, W.C., Saar, M.O., 2015. Thermal Damping and Retardation in Karst Conduits. Hydrology and Earth System Sciences, 19 (1): 137–57. https://doi.org/10.5194/hess-19-137-2015
Milanolo, S., Gabrovšek, F., 2009. Analysis of Carbon Dioxide Variations in the Atmosphere of Srednja Bijambarska Cave, Bosnia and Herzegovina. Boundary-Layer Meteorology, 131 (3): 479–93. https://doi.org/10.1007/s10546-009-9375-5
Mlakar, P., Grašič, B., Božnar, M.Z., Popović, D., Gabrovšek, F., 2020. Information System for Scientific Study of the Micrometeorology of Karst Caves – Case of Postojnska Jama Cave, Slovenija. Acta Carsologica, 49 (2–3). https://doi.org/10.3986/ac.v49i2-3.7540
OpenStax, LibreTexts, 2025. Heat Capacities of an Ideal Gas. https://phys.libretexts.org/@go/page/4362 [Accessed 10 November 2025].
Patel, H., Bhardwaj. A., 2025. Physiology, Respiratory Quotient. http://www.ncbi.nlm.nih.gov/books/NBK531494/ [Accessed 10 November 2025].
Römer, D., Halboth, F., Bollazzi, M., Roces, F., 2018. Underground Nest Building: The Effect of CO2 on Digging Rates, Soil Transport and Choice of a Digging Site in Leaf-Cutting Ants. Insectes Sociaux, 65 (2): 305–13. https://doi.org/10.1007/s00040-018-0615-x
Schoffelen, P. FM., Plasqui, G., 2017. Utilization of Different Formulae to Calculate Energy Expenditure from Gas Exchange and Substrate Oxidation; an Updated Equation for Indirect Calorimetry. In Schoffelen, P. F. M., 2017. Measurement of Human Energy Expenditure: Biological Variability and Technical Validity [PhD thesis]. Maastricht University. https://doi.org/10.26481/dis.20170914ps
Schoffelen, P. F. M., 2017. Measurement of Human Energy Expenditure: Biological Variability and Technical Validity [PhD thesis]. Maastricht University. https://doi.org/10.26481/dis.20170914ps
Surić, M., Lončarić, R., Kulišić, M., Sršen, L.,2021. Spatio-Temporal Variations of Cave-Air CO2 Concentrations in Two Croatian Show Caves: Natural vs. Anthropogenic Controls. Geologia Croatica, 74 (3): 273–86. https://doi.org/10.4154/gc.2021.21
Šebela, S., 1998. Tektonska Zgradba Sistema Postojnskih Jam / Tectonic Structure of Postojnska Jama Cave System. Vol. 18. ZRC. ZRC SAZU, Založba ZRC. https://doi.org/10.3986/961618265X
Šebela, S.,Turk, J., 2018. Črna Jama as a Cold Air Trap Cave within Postojna Cave, Slovenia. Theoretical and Applied Climatology, 134 (3–4): 741–51. https://doi.org/10.1007/s00704-017-2304-5
The Engineering ToolBox, 2004. Specific Heat Capacity of Air: Isobaric and Isochoric Heat Capacities at Various Temperatures and Pressures. https://www.engineeringtoolbox.com/air-specific-heat-capacity-d_705.html [Accessed 10 November 2025].
Republike Slovenija, 2018.Uredba o nacionalnem radonskem programu. Uradni list Republike Slovenija, 18. https://www.uradni-list.si/glasilo-uradni-list-rs/vsebina/2018-01-0799 [Accessed 10 November 2025].
Prenosi
Objavljeno
Kako citirati
Številka
Rubrike
Licenca

To delo je licencirano pod Creative Commons Priznanje avtorstva 4.0 mednarodno licenco.
Avtorji jamčijo, da je delo njihova avtorska stvaritev, da v njem niso kršene avtorske pravice tretjih oseb ali kake druge pravice. V primeru zahtevkov tretjih oseb se avtorji zavezujejo, da bodo varovali interese založnika ter da bodo povrnili morebitno škodo.
Podrobneje v rubriki: Prispevki