Speleogeneza žveplove kisline v Grčiji

Avtorji

DOI:

https://doi.org/10.3986/ac.v53i2-3.13668

Ključne besede:

speleogeneza žveplene kisline, Grčija, hidrotermalni kras, hipogene jame, jamska mineralogija

Povzetek

žveplove kisline, dokumentirani v več jamah na območjih zahodnega Peloponeza, Aghia Paraskevi, Konica, Elasona, Lavrion in Kamena Vourla v Grčiji. Karbonatne in sulfatne vzorce, zbrane v jamah na območjih zahodnega Peloponeza in Aghia Paraskevi, smo raziskali z metodami, kot so študija z vključevanjem tekočin, vrstična elektronska mikroskopija, stabilni izotopi ogljika, žvepla in kisika, rentgenska praškovna difrakcija in kemijska analiza. Proučevane jame so nastale večinoma na gladini lokalne podtalnice ali v njeni bližini ter so povezane s hidrotermalnimi izviri in geotermalnimi polji. Poleg dokumentiranja speleogeneze žveplove kisline v eni študiji primera z območja Aghia Paraskevi kalcitni spar z vrhom temperature homogenizacije pri 280°C kaže na zgodnjo speleogenetsko stopnjo, ki vključuje hidrotermalne meteorne tekočine v globokem okolju. Izotopska sestava žvepla v sulfatih (–4 ‰) kaže na oksidacijo pirita. Jame Konica so sistem, ki se je razvil na več nadmorskih višinah in je povezan z razvojem reke Sarantaporos. Jame na zahodnem Peloponezu so v dveh geotektonskih enotah. Vendar so jame v obeh enotah aktivne in imajo skupne značilnosti, na primer vse nastale blizu morske gladine, imajo podobno morfologijo in prelomni vzorec, poleg tega je v vseh sadra z vrednostmi δ34S (povprečno –26 ‰), ki so verjetno povezane z ogljikovodiki in aktivnostjo bakterij. Morfološki in geokemijski vidiki jam v teh dveh regijah kažejo na dolgotrajne, speleogenetske sisteme, ki so se razvijali v več fazah.

Prenosi

Podatki o prenosih še niso na voljo.

Literatura

Anders, B., Reischmann, T., Poller, U., Kostopoulos, D., 2005. Age and origin of granitic rocks of the eastern Vardar Zone, Greece: new constraints on the evolution of the Internal Hellenides. Journal of the Geological Society of London, 162: 857–870. https://doi.org/10.1144/0016-764904-077

Audra, P., Mocochain, L., Bigot, J. Y., Nobécourt, J. C., 2009. Morphological indicators of speleogenesis: hypogenic speleogens. Hypogene speleogenesis and karst hydrogeology of artesian basins. Simferopol: Ukrainian Institute of Speleology and Karstology, Special Paper 1: 23-32.

Audra, P., Gázquez, F., Rull, F., Bigot, J.-Y., Camus, H., 2015. Hypogene Sulfuric Acid Speleogenesis and rare sulfate minerals in Baume Galinière Cave (Alpes-de-Haute-Provence, France). Record of uplift, correlative cover retreat and valley dissection. Geomorphology, 247: 25-34. https://doi.org/10.1016/j.geomorph.2015.03.031

Auler, A. S., Smart, P. L., 2003. The influence of bedrock‐derived acidity in the development of surface and underground karst: evidence from the Precambrian carbonates of semi‐arid northeastern Brazil. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 28(2): 157-168. https://doi.org/10.1002/esp.443

Barton, H. A., Taylor, N. M., Kreate, M. P., Springer, A. C., Oehrle, S. A., Bertog, J. L. (2007). The impact of host rock geochemistry on bacterial community structure in oligotrophic cave environments. International Journal of Speleology, 36, 93-104.

Botziolis, C., Maravelis, A., Pantopoulos, G., Kostopoulou, S., Catuneanu, O., Zelilidis, A, 2021. Stratigraphic and paleogeographic development of a deep-marine foredeep: Central Pindos foreland basin, western Greece. Marine and Petroleum Geology, 128, 105012. https://doi.org/10.1016/j.marpetgeo.2021.105012

Botziolis, C. Maravelis, A. Catuneanu, O. Zelilidis, A. 2023. Controls on sedimentation in a deep-water foredeep: Central Pindos foreland basin, western Greece. Basin Research (early view). https://doi.org/10.1111/bre.12804

Bourli, N., Pantopoulos G., Maravelis AG., Zoumpoulis E., Iliopoulos G., Pomoni-Papaioannou F., Kostopoulou S., Zelilidis A. 2019a: Late Cretaceous to Early Eocene geological history of the eastern Ionian Basin, southwestern Greece: an integrated sedimentological and bed thickness statistics analysis. Cretaceous Research, 98:47–71. https://doi.org/10.1016/j.cretres.2019.01.026

Bourli, N., Kokkaliari, M., Iliopoulos, I., Pe-Piper, G., Piper, DJW., Maravelis AG., Zelilidis A. 2019b: Mineralogy of siliceous concretions, Cretaceous of Ionian zone, western Greece: implication for diagenesis and porosity. Marine and Petroleum Geology, 105:45–63. https://doi.org/10.1016/j.marpetgeo.2019.04.011

Cundy, A. B., Gaki-Papanastassiou, K., Papanastassiou, D., Maroukian, H., Frogley, M. R., Cane, T. 2010. Geological and geomorphological evidence of recent coastal uplift along a major Hellenic normal fault system (the Kamena Vourla fault zone, NW Evoikos Gulf, Greece). Marine Geology, 271(1-2), 156-164. https://doi.org/10.1016/j.margeo.2010.02.009

D’Angeli, I.M., Vattano, M., Parise, M., De Waele, J., 2017. The Coastal Sulfuric Acid Cave System of Santa Cesarea Terme (Southern Italy). In: Klimchouk, A., N. Palmer, A., De Waele, J., S. Auler, A., Audra, P. (eds) Hypogene Karst Regions and Caves of the World. Cave and Karst Systems of the World, pp. 161-168, Springer, Cham. https://doi.org/10.1007/978-3-319-53348-3_9

D’angeli, I. M., Parise, M., Vattano, M., Madonia, G., Galdenzi, S., De Waele, J. 2019. Sulfuric acid caves of Italy: A review. Geomorphology, 333, 105-122. https://doi.org/10.1016/j.geomorph.2019.02.025

De Graciansky P.C., De Dardeau G., Lemoine M., Tricart P., 1989. The inverted margin of the French Alps. Journal of the Geological Society of London, Special publ 44(1):87–104. https://doi.org/10.1144/GSL.SP.1989.044.01.06

De Waele, J., Audra, P., Madonia, G., Vattano, M., Plan, L., D’angeli, I. M., Bigot, J.-Y. Nobécourt, J.-C., 2016. Sulfuric acid speleogenesis (SAS) close to the water table: examples from southern France, Austria, and Sicily. Geomorphology, 253, 452-467. https://doi.org/10.1016/j.geomorph.2015.10.019

De Waele, J., D'Angeli, I.M., Audra, P., Plan, L., Palmer, A.N., 2024. Sulfuric acid caves of the world: A review. Earth-Science Reviews, 250, 104693. https://doi.org/10.1016/j.earscirev.2024.104693

Doutsos, T., Piper, G., Boronkay, K., Koukouvelas, I., 1993. Kinematics of the Central Hellenides. Tectonics 12:936–953. https://doi.org/10.1029/93TC00108

Dublyansky, Y. V. 2013. 6.6 Karstification by Geothermal Waters. In: Schroder, J. & Frumkin, A. (eds.) Treatise on Geomorphology, pp. 57–71. San Diego, CA. http://dx.doi.org/10.1016/B978-0-12-374739-6.00110-X

Etiope, G., Papatheodorou, G., Christodoulou, D.P., Ferentinos, G., Sokos, E., Favali, P., 2006. Methane and hydrogen sulfide seepage in the northwest Peloponnesus petroliferous basin (Greece): origin and geohazard. AAPG Bulletin, 90(5):701–713. https://doi.org/10.1306/11170505089

Farrant, A. R., Smart, P. L., 2011. Role of sediment in speleogenesis; sedimentation and paragenesis. Geomorphology, 134(1-2), 79-93. https://doi.org/10.1016/j.geomorph.2011.06.006

Ganas, A., White, K., Wadge, G., 1997. SPOT DEM analysis for fault segment mapping in the Lokris region, central Greece. EARSEL advances in remote sensing, 5, 46-53.

Hill, C. 1995. Sulfur redox reactions: Hydrocarbons, native sulfur, Mississippi Valley-type deposits, and sulfuric acid karst in the Delaware Basin, New Mexico and Texas. Environmental Geology 25, 16–23. https://doi.org/10.1007/BF01061826

Jones, D. S., Polerecky, L., Galdenzi, S., Dempsey, B. A., Macalady, J. L., 2015. Fate of sulfide in the Frasassi cave system and implications for sulfuric acid speleogenesis. Chemical Geology, 410, 21-27. https://doi.org/10.1016/j.chemgeo.2015.06.002

Karakitsios, V., 1995. The influence of preexisting structure and halokinesis on organic matter preservation and thrust system evolution in the Ionian basin, northwestern Greece: AAPG Bulletin, 79: 960–980. https://doi.org/10.1306/8D2B2191-171E-11D7-8645000102C1865D

Karakitsios, V., 2013. Western Greece and Ionian Sea petroleum systems. AAPG Bulletin, 97 (9): 1567–1595. https://doi.org/10.1306/02221312113

Kesler, E.S., 2005. Fluids in Planetary Systems: ore-Forming Fluids. Elements, 1(1): 13–18.

Klimchouk, A., 2017. Types and Settings of Hypogene Karst. In: Klimchouk, A., N. Palmer, A., De Waele, J., S. Auler, A., Audra, P. (eds) Hypogene Karst Regions and Caves of the World. Cave and Karst Systems of the World, pp. 1-39. Springer, Cham. https://doi.org/10.1007/978-3-319-53348-3_1

Klimchouk, A. B., Eftimi, R., Andreychouk, V. N., 2022. Hypogene karst in the External Albanides and its pronounced geomorphological effect. Proceedings of the 18th International Congress of Speleology, Vol. IV - Karstologia Mémoires n°24, Geomorphology and Speleogenesis: : 205-208, Savoie Mont-Blanc.

Lazaridis, G., 2017. Hypogene Speleogenesis in Greece. In: Klimchouk, A., N. Palmer, A., De Waele, J., S. Auler, A., Audra, P. (eds) Hypogene Karst Regions and Caves of the World. Cave and Karst Systems of the World, pp. 225-239, Springer, Cham. https://doi.org/10.1007/978-3-319-53348-3_14

Lazaridis, G., Melfos, V. Papadopoulou, L. 2011. The first cave occurrence of orpiment (As2S3) from the sulfuric acid caves of Aghia Paraskevi (Kassandra Peninsula, N. Greece). International Journal of Speleology, 40: 133-139. http://dx.doi.org/10.5038/1827-806X.40.2.6

Manakos, A., 1999. Hydrogeological behavior and stochastic simulation of Krania Elassona karstic aquifer, Thessaly. [PhD Thesis] Aristotle University of Thessaloniki, pp. 214.

Manakos, A., Ntona, M. M., Kazakis, N., Chalikakis, K., 2018. Enhanced characterization of the Krania–Elassona structure and functioning allogenic karst aquifer in central Greece. Geosciences, 9(1): 15. https://doi.org/10.3390/geosciences9010015

Maravelis, A.G., Makrodimitras, G., Zelilidis, A., 2012. Hydrocarbon prospectivity in Western Greece. Oil and gas European Magazine 38(2): 84-89.

Merdenisianos, K., 1994. Thermal caves "Kaiafa" and "Kounoupeli" of the Prefecture of Ilia: thermal cave of "Anigridon Nymphon" of Kaiafa baths of the prefecture of Ilia. Bulletin of the Hellenic Speleological Society, 21, 413-426.

Onac, B., Sumrall, J.G., Tamas, T., Povara, I., Kearns, J., Darmiceanu, V., Veres, D.S., Lascu, C., 2009. The relationship between cave minerals and H2S-rich thermal waters along the Cerna Valley (SW Romania). Acta Carsologica, 38(1), 67-79.

Onac, B. P., Forti, P., 2011. State of the art and challenges in cave minerals studies. Studia UBB Geologia, 56(1), 33-42. http://dx.doi.org/10.5038/1937-8602.56.1.4

Onac, B. P., Wynn, J. G. Sumrall, J. B., 2011. Tracing the sources of cave sulfates: a unique case from Cerna Valley, Romania. Chemical Geology, 288, 105-114. https://doi.org/10.1016/j.chemgeo.2011.07.006

Ottens, B., Voudouris, P., 2018. Griechenland: Mineralien-Fundorte-Lagerstätten, Christian Weise Verlag, Munchen, Germany, 480 pp. ISBN 978-3-921656-86-0.

Pe-Piper, G., Doutsos, T., Mijara, A., 1993. Petrology and regional significance of the Hercynian granitoid rocks of the Olympiada area, northern Th essaly, Greece. Chemie der Erde Geochemistry 53, 21–36.

Petrocheilou, A., 1974. The cave "Peristeri" in Megalochori, Methana. Bulletin of Hellenic Speleological Society, 12(5): 142-151.

Plan, L., Tschegg, C., De Waele, J., Spötl, C., 2012. Corrosion morphology and cave wall alteration in an Alpine sulfuric acid cave (Kraushöhle, Austria). Geomorphology, 169, 45-54. https://doi.org/10.1016/j.geomorph.2012.04.006

Polyak, V. J., Provencio, P., 2001. By-product materials related to H2S-H2SO4 influenced speleogenesis of Carlsbad, Lechuguilla, and other caves of the Guadalupe Mountains, New Mexico. Journal of Cave and Karst Studies, 63(1), 23-32.

Rieck, B., Kolitsch, U., Voudouris, P., Giester, G., Tzeferis, P., 2018. More new finds from Lavrion, Greece. Mineralien Welt 5, 32-77 (in German).

Swezey, C.S., Piatak, N.M., Seal, R.R., Wandless G.A., 2002. Sulfur and oxygen isotopic composition of gypsum in caves of Virginia and West Virginia. Geological Society of America, Abstracts with Programs, 34: 231.

Temovski, M., Audra, P., Mihevc, A., Spangenberg, J. E., Polyak, V., McIntosh, W., Bigot, J. Y., (2013). Hypogenic origin of Provalata Cave, Republic of Macedonia: a distinct case of successive thermal carbonic and sulfuric acid speleogenesis. International Journal of Speleology, 42(3), 7. http://dx.doi.org/10.5038/1827-806X.42.3.7

Temovski, M., Futó, I., Túri, M., Palcsu, L., 2018. Sulfur and oxygen isotopes in the gypsum deposits of the Provalata sulfuric acid cave (Macedonia). Geomorphology, 315, 80-90. https://doi.org/10.1016/j.geomorph.2018.05.010

Vasileiou, E., Koumantakis, I., 2013. The role of Kefalovruso and Amourio springs in the hydrodynamic conditions of Potamia Elassona Basin. Bulletin of the Geological Society of Greece, 47(2), 801-810.

Vaxevanopoulos, M., 2006. Tectonic conditions in the speleogenetic process of Melissotripa cave in Kefalovriso of Elassona (Central Greece). [Msc Thesis] Aristotle University of Thessaloniki, pp. 1-106.

Vourlakos, N.M., Fitros, M.G., 2019. The Minerals of Lavrion; The Scientific Society of Lavreotiki: Lavrion, Greece, No. 13; ISBN 978-960-85333-6.

Webb, J. A., 2021. Supergene sulphuric acid speleogenesis and the origin of hypogene caves: evidence from the Northern Pennines, UK. Earth Surface Processes and Landforms, 46(2), 455-464. https://doi.org/10.1002/esp.5037

White, W. B., 2015. Minerals and speleothems in Burnsville Cove caves. The Caves of Burnsville Cove, Virginia: Fifty Years of Exploration and Science, 421-441.

Wynn, J. G., Sumrall, J. B. Onac, B. P., 2010. Sulfur isotopic composition and the source of dissolved sulfur species in thermo-mineral springs of the Cerna Valley, Romania. Chemical Geology, 271, 31-43. https://doi.org/10.1016/j.chemgeo.2009.12.009

Zelilidis, A., Maravelis A.G., Tserolas, P., Konstantopoulos, P.A., 2015. An overview of the Petroleum systems in the Ionian zone, onshore NW Greece and Albania. Journal of Petroleum Geology, 38(3):331-347. https://doi.org/10.1111/jpg.12614

Zoumpouli, E., Maravelis, A.G., Iliopoulos, G., Botziolis, C., Zygouri, V., Zelilidis, A., 2022. Re-Evaluation of the Ionian Basin Evolution during the Late Cretaceous to Eocene (Aetoloakarnania Area, Western Greece). Geosciences; 12(3):106. https://doi.org/10.3390/geosciences12030106.

Objavljeno

2024-12-27

Kako citirati

Lazaridis, G. T., Melfos, V., Papadopoulou, L., Onac, B. P., Stergiou, C. L., Maravelis, A. G., Voudouris, P., Dora, D., Fitros, M., Papaioannou, H., & Vouvalidis, K. (2024). Speleogeneza žveplove kisline v Grčiji. Acta Carsologica, 53(2-3), 127–144. https://doi.org/10.3986/ac.v53i2-3.13668

Številka

Rubrike

Original papers