Razkrivanje delovanja vadozne cone alpskih kraških vodonosnikov: nova spoznanja iz sledilnega poskusa v jamskem sistemu Migovec (Julijske alpe, SZ Slovenija)

Avtorji

  • Franci Gabrovšek Research Centre of the Slovenian Academy of Sciences and Arts, Karst Research Institute, Postojna, Slovenia https://orcid.org/0000-0001-8397-6487
  • Matej Blatnik Research Centre of the Slovenian Academy of Sciences and Arts, Karst Research Institute, Postojna, Slovenia
  • Nataša Ravbar Research Centre of the Slovenian Academy of Sciences and Arts, Karst Research Institute, Postojna, Slovenia
  • Jana Čarga Jamarska sekcija PD Tolmin
  • Miha Staut Jamarski klub Železničar, Ljubljana
  • Metka Petrič Research Centre of the Slovenian Academy of Sciences and Arts, Karst Research Institute, Postojna, Slovenia

DOI:

https://doi.org/10.3986/ac.v52i2-3.13348

Ključne besede:

kraški vodonosnik, nezasičena cona, sledilni poskus, Jadransko-Črnomorsko razvodje, Juilijske Alpe

Povzetek

Vodonosniki visokega in alpskega krasa so pomembni viri pitne vode. Dinamika toka skozi te vodonosnike je izjemno kompleksna, saj je njihova struktura posledica večfaznega, deloma glaciokraškega razvoja v tektonsko aktivnem območju. Debelina vadozne cone visokogorskih kraških vodonosnikov lahko presega dva kilometra. V članku predstavljamo in obravnavamo rezultate sledilnega poskusa v alpskem krasu Julijskih Alp (Slovenija), natančneje v Sistemu Migovec, najdaljšem jamskem sistemu v Sloveniji (dolžina = 43 km, globina = 972 m). Jama se razteza pod gorskim grebenom, ki ločuje dolini Soče in Save ter tako tvori topografsko ločnico med jadranskim in črnomorskim bazenom. V začetku septembra 2019 smo injicirali tri kilograme uranina v jezero Colarado, približno 900 metrov pod planoto in 100 metrov nad nizkovodnim nivojem podzemne vode. Znane izvire v dolinah na obeh straneh razvodnice smo spremljali z ročnim ali samodejnim vzorčenjem in terenskim fluorometrom. Do izjemnega padavinskega dogodka v začetka novembra sledila nismo zaznali na nobenem od opazovanih mest. Ob dogodku se je sledilo zanesljivo pojavilo le na vzorčevalnem mestu v zgornjem toku Tolminke, kjer je po grobi oceni v 60 urah prešlo 60-65 % mase sledila. Na drugih mestih je bil dvig koncentracije, zaradi odsotnosti sledila ali prevelikega razredčenja, premajhen, da bi lahko potrdili pojav sledila. Rezultati kažejo, da vadozni tokovi ob manjših dogodkih niso sprožili zaznavnega prenosa sledila, pač pa je do tega prišlo šele, ko je epifreatični tok ob izjemnem dogodku dosegel nivo vodnih teles s sledilom. Če upoštevamo celoten čas od injiciranja do zaznave sledila, je navidezna hitrost potovanja 1,7 m/h, ob predpostavki, da je sledilo mobiliziral novembrski padavinski dogodek, pa je navidezna hitrost 70 m/h. Študija opozarja na izzive in pasti pri sledenju vode v alpskih kraških sistemih ter predlaga načine, kako se jim izogniti.

Prenosi

Podatki o prenosih še niso na voljo.

Literatura

ARSO, 2019. Slovenian Environment Agency, Interactive weather. https://meteo.arso.gov.si/met/en/app/webmet/ [Accessed 19 November 2019].

ARSO, 2020a. Slovenian Environment Agency, Archive hydrological data. http://vode.arso.gov.si/hidarhiv/pov_arhiv_tab.php [Accessed 6 January 2020].

ARSO, 2020b. Slovenian Environment Agency, Hydrological data - automatic gauging stations and observations. https://www.arso.gov.si/vode/podatki/amp/Ht_30.html [Accessed 6 January 2020].

ARSO, 2022. Slovenian Environment Agency, Meteorological data archive. https://meteo.arso.gov.si/met/sl/app/webmet/ [Accessed 15 November 2022].

Atlas okolja, 2022. Environmental Atlas, Lidar, Hydrogeological map and Tracer tests data. http://gis.arso.gov.si/atlasokolja/profile.aspx?id=Atlas_Okolja_AXL@Arso&culture=en-US [Accessed 15 November 2022].

Becker, A., 2005. Runoff Processes in Mountain Headwater Catchments: Recent Understanding and Research Challenges. In: Huber, U. M. et al. (Eds.) Global Change and Mountain Regions. Springer Netherlands, pp. 283-295. DOI: 10.1007/1-4020-3508-X

Benischke, R., Goldscheider, N., Smart, C.C., 2007. Tracer techniques. In: Goldscheider, N., Drew, D. (Eds.) Methods in Karst Hydrogeology. Taylor and Francis, London, pp. 147-170.

Benischke, R., Harum, T., Reszler, C., Saccon, P., Ortner, G., Ruch, C., 2010. Karstentwässerung im Kaisergebirge (Tirol, Österreich)– Abgrenzung hydrographischer Einzugsgebiete durch Kombination hydrogeologischer Untersuchungen mit Isotopenmethoden und hydrologischer Modellierung. Grundwasser – Zeitschrift der Fachsektion Hydrogeologie, 15: 43-57. DOI: 10.1007/s00767-009-0124-y

Brenčič, M., Vreča, P., 2016. Hydrogeological and isotope mapping of the karstic River Savica in NW Slovenia. Environmental Earth Sciences, 75: 651. DOI: 10.1007/s12665-016-5479-7

Buser, S., 1986. Basic Geological Map of SFRJ 1:100.000, sheet Tolmin in Videm. Zvezni geološki zavod, Beograd.

Cave Registry, 2022. Cadastre of caves of the Karst Research Institute ZRC SAZU and Cave Association of Slovenia. Postojna, Ljubljana.

Collados-Lara, A.-J., Pardo-Igúzquiza, E., Pulido-Velazquez, D., 2019. A distributed cellular automata model to simulate potential future impacts of climate change on snow cover area. Advances in Water Resources, 124: 106-119. https://doi.org/10.1016/j.advwatres.2018.12.010.

Cucchi, F., F. Gemiti, P. Manca, Semeraro, R., 1997. Underground water tracing in the east part of the karst Canin massif (Led Zeppelin Abyss) (Western Julian Alps). Ipogea, 2: 141-150.

De la Torre, B., Mudarra, M., Andreo, B., 2020. Investigating karst aquifers in tectonically complex alpine areas coupling geological and hydrogeological methods. Journal of Hydrology X, 6, 100047. https://doi.org/10.1016/j.hydroa.2019.100047

Dobler, C., Bürger, G., Stötter, J., 2013. Simulating future precipitation extremes in a complex alpine catchment. Natural Hazards and Earth System Sciences, 13: 263–277.

Filippini, M., Squarzoni, G., De Waele, J., Fiorucci, A., Vigna, B., Grillo, B., Gargini, A., 2018. Differentiated spring behavior under changing hydrological conditions in an alpine karst aquifer. Journal of Hydrology, 556: 572–584. https://doi.org/10.1016/j.jhydrol.2017.11.040

Finger, D., Hugentobler, A., Huss, M., Voinesco, A., Wernli, H., Fischer, D., Weber, E., Jeannin, P.-Y., Kauzlaric, M., Wirz, A., Vennemann, T., Hüsler, F., Schädler, B., Weingartner, R., 2013. Identification of glacial meltwater runoff in a karstic environment and its implication for present and future water availability. Hydrology Earth System Sciences, 17: 3261–3277. DOI:10.5194/hess-17-3261-2013, 2013.

Frank S, Goeppert N, Goldscheider N., 2021. Improved understanding of dynamic water and mass budgets of high-alpine karst systems obtained from studying a well-defined catchment area. Hydrological Processes, 35: e14033. https://doi.org/10.1002/hyp.1403

Frost, J.M.F., Hooper, J., 2007. The Hollow Mountain (1994-2006), volume 1. London (ICCC, JSPDT).

Gams, I., 1966. Poročilo o barvanju v Dimnicah in v Triglavskem breznu leta 1964. Acta Carsologica, 4: 153-156 (in Slovenian).

Goldscheider, N., 2005. Fold structure and underground drainage pattern in the alpine karst system Hochifen-Gottesacker. Eclogae Geologicae Helvetiae, 98/1: 1-17. DOI: 10.1007/s00015-005-1143-z.

Goldscheider, N., Chen, Z., Auler, A.S., Bakalowicz, M., Broda, S., Drew, D., Hartmann, H., Jiang, G., Moosdorf, N., Stevanovic, Z., Veni, G., 2020. Global distribution of carbonate rocks and karst water resources. Hydrogeology Journal. https://doi.org/10.1007/s10040-020-02139-5.

Goldscheider, N., Neukum, C., 2010. Fold and fault control on the drainage pattern of a double-karst-aquifer system, Winterstaude, Austrian Alps. Acta Carsologica, 39/2: 173-186. DOI: http://dx.doi.org/10.3986/ac.v39i2.91.

Gremaud, V., Goldscheider, N., Savoy, L., Favre, G., Masson, H., 2009. Geological structure, recharge processes and underground drainage of a glacierised karst aquifer system, Tsanfleuron-Sanetsch, Swiss Alps. Hydrogeology Jounal, 17: 1833-1848. DOI:10.1007/s10040-009-0485-4, 2009.

Janež, J., 2002. Veliki kraški izviri v zgornjem Posočju = Karst springs in the Upper Soča Valley. Geologija, 45/2: 393-400.

Jurkovšek, B., 1986. Basic Geological Map of SFRJ 1:100.000, sheet Beljak in Ponteba. Zvezni geološki zavod, Beograd.

Kaminsky, E., Plan, L., Wagner, T., Funk, B., Oberender P., 2021. Flow dynamics in a vadose shaft – a case study from the Hochschwab karst massif (Northern Calcareous Alps, Austria). International Journal of Speleology, 50/2: 157-172. https://doi.org/10.5038/1827-806X.50.2.2375

Kastelic, V., Vrabec, M., Cunningham, D., Gosar, A., 2008. Neo-Alpine structural evolution and present-day tectonic activity of the eastern Southern Alps: the case of the Ravne Fault, NW Slovenia. Journal of Structural Geology, 30/8: 963-975. DOI: 10.1016/j.jsg.2008.03.009

Kogovšek, J., Petrič, M., 2004. Advantages of longer-term tracing -- three case studies from Slovenia. Environmental geology, 47: 76-83.

Kraller, G., Strasser, U., Franz, H., 2011. Effect of Alpine karst on the hydrology of the Berchtesgadener Ache basin: a comprehensive summary of karst research in the Berchtesgaden Alps. Journal on Protected Mountain Areas Research and Management, 3, 1. http://epub.oeaw.ac.at/eco.mont

Lauber, U., Goldscheider, N., 2014. Use of artificial and natural tracers to assess groundwater transit-time distribution and flow systems in a high-alpine karst system (Wetterstein Mountains, Germany). Hydrogeology Journal, 22/8: 1807-1824. DOI: 10.1007/s10040-014-1173-6.

Maloszewski, P., Stichler, W., Zuber, A., Rank, D., 2002. Identifying the flow systems in a karstic-fissured-porous aquifer, the Schneealpe, Austria, by modelling of environmental 18O and 3H isotopes. Journal of Hydrology, 256/1-2: 48-59. DOI: 10.1016/S0022-1694(01)00526-1.

Mudarra, M., Andreo, B., 2011. Relative importance of the saturated and the unsaturated zones in the hydrogeological functioning of karst aquifers: the case of Alta Cadena (Southern Spain). Journal of Hydrology, 397: 263-280. DOI: 10.1016/j.jhydrol.2010.12.005.

Müller, M. H., Weingartner, R., Alewell, C., 2013. Importance of vegetation, topography and flow paths for water transit times of base flow in alpine headwater catchments. Hydrology and Earth System Sciences, 17/4: 1661-1679. DOI: 10.5194/hess-17-1661-2013.

Novak, D., 1990. Novejša sledenja kraških voda v Sloveniji po letu 1965. Geologija, 33: 461-478. DOI: 10.5474/geologija.1990.012 (in Slovenian).

Novak, D., 1995. Podzemeljske vode v Kamniških in Savinjskih Alpah. Geologija, 37-38: 415-435. DOI: 10.5474/geologija.1995.016 (in Slovenian).

Parise, M., Gabrovsek, F., Kaufmann, G., Ravbar, N., 2018. Recent advances in karst research: from theory to fieldwork and applications. In: Parise, M., Gabrovsek, F., Kaufmann, G., Ravbar, N., (Eds.), Advances in karst research: Theory, fieldwork and applications. Geological Society London, Special Publications, 466 pp. https://doi.org/10.1144/SP466.26

Petrič, M., 2004. Alpine karst waters in Slovenia. Acta Carsologica, 33/1: 11-24.

Petrič, M., Kogovšek, J., Ravbar, N., 2018. Effects of the vadose zone on groundwater flow and solute transport characteristics in mountainous karst aquifers: the case of the Javorniki-Snežnik massif (SW Slovenia). Acta Carsologica, 47/1: 35-51.DOI: 10.3986/ac.v47i1.5144.

Petrič, M., Ravbar, N., Gostinčar, P., Krsnik, P., Gacin, M., 2020. GIS database of groundwater flow characteristics in carbonate aquifers: tracer test inventory from Slovenian karst. Applied geography, 118, 8 pp. DOI: 10.1016/j.apgeog.2020.102191.

Placer, L., 1999. Contribution to the macrotectonic subdivision of the border region between Southern Alps and External Dinarides. Geologija, 41: 223-255. DOI: 10.5474/geologija.1998.013.

Poulain, A., Watlet, A., Kaufmann, O., Van Camp, M., Jourde, H., Mazzilli, N., Rochez, G., Deleu, R., Quinif, Y., Hallet, V., 2018. Assessment of groundwater recharge processes through karst vadose zone by cave percolation monitoring. Hydrological Processes, 32: 2069-2083. https://doi.org/10.1002/hyp.13138

Racine, T., 2019a. The Hollow Mountain III (2013-2017), Volume 3. London (ICCC, JSPDT).

Racine, T., 2019b. The Migovec System, a deep alpine cave system of the Julian Alps, NW Slovenia.-Die Höhle, 70/1-4: 57-75.

Ravbar, N., Petrič, M., Blatnik, M., Švara, A., 2021. A multi-methodological approach to create improved indicators for the adequate karst water source protection. Ecological Indicators, 126, 107693. https://doi.org/10.1016/j.ecolind.2021.107693

Rössler, O., Diekkrüger, B., Löffler, L., 2012. Potential drought stress in a Swiss mountain catchment–Ensemble forecasting of high mountain soil moisture reveals a drastic decrease, despite major uncertainties. Water Resources Research, 48: 1-19.

Skoberne, P. 1988. Hundred natural wanders of Slovenia. Prešernova družba, Ljubljana (in Slovenian).

Staut, M., Stržinar A., 2020. Poskus sledenja vodnih povezav pod Komno. Bilten Jamarskega kluba Železničar, 32: 37-42 (in Slovenian).

Stevanović, Z., 2018. Global distribution and use of water from karst aquifers. In Parise, M., Gabrovšek, F., Kaufmann, G., Ravbar, N. (Eds.). Advances in karst research: Theory, fieldwork and applications (Vol. 466, pp. 217-236). Geological Society of London, Special Publications.

Šmuc, A., 2005. Jurassic and Cretaceous stratigraphy and sedimentary evolution of the Julian Alps, NW Slovenia. ZRC Publishing, Ljubljana, 98 pp.

Trišič, N., Bat, M., Polajnar, J., Pristov, J., 1997. Water balance investigations in the Bohinj region. In: Kranjc, A. (Ed). Tracer Hydrology, pp. 295-298.

Trišič, N., 2014. Poročilo o izvedbi in rezultatih sledilnega poskusa na območju Vogla v letu 2002. Internal report, Slovenian Environment Agency (in Slovenian).

Turk, J., Malard, A., Jeannin, P. Y., Petrič, M., Gabrovšek, F., Ravbar, N., Vouillamoz, J., Slabe, T., Sordet, V., 2015. Hydrogeological characterization of groundwater storage and drainage in an alpine karst aquifer (the Kanin massif, Julian Alps). Hydrological Processes, 29/8: 1986-1998. DOI: 10.1002/hyp.10313.

Vincenzi, V., Riva, A., Rossetti, S., 2011. Towards a better knowledge of Cansiglio karst system (Italy): results of the first successful groundwater tracer test. Acta Carsologica, 40/1: 147-159.

Zini, L., 2014. Inquadramento dell'area pilota dell'acquifero carsico del Monte Canin. Prova di tracciamento. Final conference presentation "ASTIS" Acque Sotterranee e di Transizione Isonzo / Soča (Podzemne vode čezmejnih vodonosnikov Isonzo / Soča). DIVIG Trieste University, 31 pp. https://docplayer.net/4796116-Final-conference-astis-podzemne-vode-cezmejnih-vodonosnikov-isonzo-soca-acque-sotterranee-e-di-transizione-isonzo-soca.html

Objavljeno

2023-12-13

Kako citirati

Gabrovšek, F., Blatnik, M., Ravbar, N., Čarga, J. ., Staut, M., & Petrič, M. (2023). Razkrivanje delovanja vadozne cone alpskih kraških vodonosnikov: nova spoznanja iz sledilnega poskusa v jamskem sistemu Migovec (Julijske alpe, SZ Slovenija). Acta Carsologica, 52(2-3). https://doi.org/10.3986/ac.v52i2-3.13348

Številka

Rubrike

Original papers