O vodni bilanci kraških polj: primer Planinskega polja (Slovenija)
DOI:
https://doi.org/10.3986/ac.v51i2.11029Ključne besede:
polje flooding, water balance, automatic monitoring, Dinaric karst, numerical modellingPovzetek
Kraška polja so kotanje z ravnim dnom v poplavnem nivoju podzemne vode. Gladina vode ob poplavah na kraških poljih se redno zviša za več metrov, poplave pa lahko trajajo več mesecev in pri tem povzročajo škodo na infrastrukturi. Napovedovanje najvišje možne višine gladine vode ob poplavah temelji na dobri oceni vodne vsebnosti kraških polj, kar pa je v praksi težko izvedljivo, saj natančna meritev vseh dotokov in odtokov največkrat ni mogoča. V tem članku rešujemo problem vodne vsebnosti na primeru polja na Dinarskem krasu, kjer smo vzpostavili mrežo zveznih opazovanj vodnega nivoja na polju in v okoliških jamah. Z združevanjem visoko ločljivih lidarskih podatkov ter časovnih nizov vodnih nivojev in dotokov glavnih izvirov smo dobili časovne nize spreminjanja količine na polju uskladiščene vode in oceno vodne vsebnosti polja. Najvišje vrednosti skupnega dotoka v opazovanem obdobju so bile med 140 m3/s in 150 m3/s, od tega tretjino zajema dotok iz nemerjenih virov. Pomembno količino k dotoku in odtoku prispevajo estavele ob severozahodnem robu polja, kjer pretokov ne moremo meriti. Ocenili smo tudi pomen neposrednega dotoka ob intenzivnih padavinah. Skupni odtok s polja ocenjujemo med 65 m3/s in 75 m3/s. Izračunane časovne nize dotoka in odtoka smo uporabili kot vhodni podatek v numeričnem modelu, ki simulira poplavno dinamiko na polju in v jamah vodonosnika ob njem. Rezultati modela se dobro ujemajo z merjenimi nivoji v jamah in na polju ter potrjujejo ugotovljeno vodno vsebnost polja in konceptualni hidrogeološki model. V delu smo prikazali uporabnost združevanja meritev vodostajev z visoko ločljivimi lidarskimi podatki pri poplavnih študijah na Krasu, še posebej na območjih, kjer so dotoki in odtoki slabo določljivi. Predstavili smo še smernice pri vzpostavitvi merilne mreže, kadar je število merilnih mest zaradi finančnih ali drugih ovir omejeno.
Prenosi
Literatura
References
Anderson, M.P., Woessner, W.W., Hunt, R.J., 2015. Applied Groundwater Modeling. Simulation of Flow and Advective Transport. Second Edition. Academic Press.
ARSO, 2022a. Archive of hydrological data. Ministry of the Environment and Spatial Planning, Slovenian Environment Agency. Available online: http://vode.arso.gov.si/hidarhiv/.
ARSO, 2022b. Lidar data network. Ministry of the Environment and Spatial Planning, Slovenian Environment Agency. Available online: https://gis.arso.gov.si.
Blatnik, M., Frantar, P., Kosec, D., Gabrovšek, F., 2017. Measurements of the outflow along the eastern border of Planinsko Polje, Slovenia. Acta Carsologica 46 (1), 83–93. doi: 10.3986/ac.v46i1.4774.
Blatnik, M., Mayaud, C., Gabrovšek, F., 2019. Groundwater dynamics between Planinsko Polje and springs of the Ljubljanica River, Slovenia. Acta Carsologica, 48 (2), 199–226. doi: 10.3986/ac.v48i2.7263
Blatnik, M., Mayaud, C., Gabrovšek, F., 2020. Supplement to the paper “Groundwater dynamics between Planinsko Polje and springs of the Ljubljanica River, Slovenia” from Blatnik et al. (2019) published in Acta Carsologica 48/2. Acta Carsologica 49 (1), 143-147. doi: 0.3986/ac.v49i1.8721.
Bonacci, O., 1987. Karst hydrology: with special reference to the Dinaric karst. Springer-Verlag, Berlin. doi: 10.1007/978-3-642-83165-2.
Bonacci, O., 2013. Poljes, ponors and their catchments. In: Shroder, J. (Editor in Chief), Frumkin, A. (Ed.), Treatise on Geomorphology. Academic Press, San Diego, CA, vol. 6, Karst Geomorphology, 112–120. doi:10.1016/B978-0-12-374739-6.00103-2.
Duran, L., Gill, L., 2021. Modeling spring flow of an Irish karst catchment using Modflow-USG with CLN. J. Hydrol. 597 125971. doi: https://doi.org/10.1016/j.jhydrol.2021.125971.
Ford, D., Williams, P., 2007. Karst Hydrogeology and Geomorphology. John Wiley & Sons, Ltd. p 562.
Frantar, P., Ulaga, F., 2015. Visoke vode Planinskega polja leta 2014. Ujma, 29, 66–73.
Gabrovšek, F., Kogovšek, J., Kovačič, G., Petrič, M., Ravbar, N. & J. Turk, 2010: Recent results of tracer test in the catchment of the Unica River (SW Slovenia).- Acta Carsologica, 39, 1, 27-37. DOI: 10.3986/ac.v39i1.110
Gabrovšek, F., Peric, B. & G. Kaufmann, 2018: Hydraulics of epiphreatic flow of a karst aquifer, Slovenia-Italy.- Journal of Hydrology, 560, 56-74. DOI: 10.1016/j.jhydrol.2018.03.019
Gams, I., 1981. Poplave na Planinskem Polju. Geografski Zbornik XX.
Gill, L.W., Naughton, O., Johnston, P., 2013. Modelling a network of turloughs in lowland karst. Water Resour. Res. 49 (6), 3487–3503. doi:10.1002/wrcr.20299.
Gill, L.W., Schuler, P., Duran, L., Morrissey, P., Johnston, P.M., 2021. An evaluation of semidistributed-pipe-network and distributed-finite-difference models to simulate karst systems. Hydrogeology Journal 29:259–279. doi: https://doi.org/10.1007/s10040-020-02241-8.
Gospodarič, R., Habič, P., 1976. Underground water tracing. Investigations in Slovenia 1972–1975. Institute for Karst Research, Ljubljana, Slovenia.
Jelovčan, M., Žigon, T., Brenčič, M., 2021. Zgodovina in rekonstrukcija meritev vodostajev na Planinskem polju - History and reconstruction of water level measurements on the Planinsko polje, Geografski vestnik 93/1. doi: https://doi.org/10.3986/GV93103.
Jenko, F., 1959. Hidrogeologija in vodno gospodarstvo krasa. Državna založba Slovenije. Ljubljana.
Kogovšek, B., 2022. Characterization of a karst aquifer in the recharge area of Malenščica and Unica springs based on spatial and temporal variations of natural tracers.- PhD thesis. University of Nova Gorica, pp. 242.
Kovačič, G., 2010. An attempt towards an assessment of the Cerknica Polje water balance. Acta Carsologica 39 (1), 39-50. doi: http://dx.doi.org/10.3986/ac.v39i1.111.
Kovačič, G., Ravbar, N., 2010. Extreme hydrological events in karst areas of Slovenia, the case of the Unica River basin. Geodinamica Acta 23 (1-3), 89-100. doi: 10.3166/ga.23.89-100.
López-Chicano, M., Calvache, M.L., Martín-Rosales, W., Gisbert. J., 2002. Conditioning factors in flooding of karstic poljes - the case of the Zafarraya polje (South Spain). Catena 49, 331– 352.
Lučić, I., 2014. General aspects of the Karst Poljes of the Dinaric Karst. In: Sackl P., Durst R., Kotrošan, D., Stumberger, B., 2014. Dinaric Karst Poljes - Floods for Life. EuroNatur, Radolfzell. ISBN 978-3-00-045287-1.
Mayaud, C., Gabrovšek, F., Blatnik, M., Kogovšek, B., Petrič, M. & N. Ravbar, 2019: Understanding flooding in poljes: a modelling perspective. J. Hydrol. 575, 874-889. https://doi. org/10.1016/j.jhydrol.2019.04.092
McCormack, T., O’Connell, Y., Daly, E., Gill, L.W., Henry, T., Perriquet, M., 2017. Characterisation of karst hydrogeology in Western Ireland using geophysical and hydraulic modelling techniques. J. Hydrol.: Regional Studies 10. 1–17. http://dx.doi.org/10.1016/j.ejrh.2016.12.083.
Mihevc, A., Zupan Hajna, N., Prelovšek, M., 2010. Case studies from the Dinaric Karst of Slovenia. In: Mihevc, A., Prelovšek, M., Zupan Hajna, N., (Eds.) 2010. Introduction to the Dinaric Karst. Karst Research Institute at ZRC SAZU, Postojna. ISBN 978-961-254-198-9.
Milanović, P., 2004. Water resources engineering in Karst. CRC Press. Boca Raton.
Morrissey, P.J., McCormack, T., Naughton, O., Johnston, P.M., Gill, L.W., 2020. Modelling groundwater flooding in a lowland karst catchment. J. Hydrol. 580, 124361. doi: https://doi.org/10.1016/j.jhydrol.2019.124361.
Morrissey, P., Nolan, P., McCormack, T., Johnston, P., Naughton, O., Bhatnagar, S., and Gill, L., 2021. Impacts of climate change on groundwater flooding and ecohydrology in lowland karst, Hydrol. Earth Syst. Sci., 25, 1923–1941. doi: https://doi.org/10.5194/hess-25-1923-2021.
Myhre, G., Alterskjær, K., Stjern, C.W.,. Hodnebrog, Ø., Marelle, L., Samset, B.H., Sillmann, J., Schaller, N., Fischer, E., Schulz, M,. Stohl, A., 2019. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci Rep 9, 16063 (2019). doi: https://doi.org/10.1038/s41598-019-52277-4.
Naughton, O., Johnston, P.M., Gill, L.W., 2012. Groundwater flooding in Irish karst: The hydrological characterization of ephemeral lakes (turloughs). J. Hydrol. 470–471, 82–97. doi: http://dx.doi.org/10.1016/j.jhydrol.2012.08.012.
Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models, part I: a discussion of principles. J. Hydrol. 10, 282–290. https://doi.org/10.1016/0022- 1694(70)90255-6.
Pagnozzi, M., Coletta, G., Leone, G., Catani, V., Esposito, L., Fiorillo, F., 2020. A Steady-State Model to Simulate Groundwater Flow in Unconfined Aquifer. Applied Sciences. 10(8), 2708. doi: https://doi.org/10.3390/app10082708.
Putick, W., 1889. Die hydrologischen Geheimnisse des Karstes und seine unterirdischen Wasserläufe: auf Grundlage der neuesten hydrotechnischen Forschungen. Himmel und Erde.
Ravbar, N., 2008. Naravne in ekološke nesreče na Krasu. In: Zorn, M., Komac, B., Pavšek, M., Pagon, P., (Eds.) 2008: Naravne nesreče v Sloveniji : zbornik povzetkov : 1. trienalni znanstveni posvet, Ig (Izobraževalni center za zaščito in reševanje Republike Slovenije). Ljubljana: Založba ZRC. p. 39
Ravbar, N., 2013: Variability of groundwater flow and transport processes in karst under different hydrologic conditions.- Acta Carsologica, 42, 2-3, 327-338. DOI: 10.3986/ac.v42i2.644.
Ravbar, N., Petrič, M., Kogovšek, B., Blatnik, M., Mayaud, C., 2018. High waters study of a Classical Karst polje – An example of the Planinsko Polje, SW Slovenia. Symposium Karst 2018 – Expect the Unexpected. Proceedings, 417-424. Trebinje. ISBN 978-86-735-325-5.
Ravbar, N., Mayaud, C., Blatnik, M., Petrič, M., 2021. Determination of inundation areas within karst poljes and intermittent lakes for the purposes of ephemeral flood mapping. Hydrogeology Journal, 29 (1), 213-228. doi: 10.1007/s10040-020-02268-x.
Schuler, P., Stoeckl, L., Schnegg, P.A., Bunce, C., Gill, L., 2020. A combined-method approach to trace submarine groundwater discharge from a coastal karst aquifer in Ireland. Hydrogeology Journal, 28, 561-577. doi: https://doi.org/10.1007/s10040-019-02082-0.
Stepišnik, U., Ferk, M., Gostinčar, P., Černuta, L., 2012. Holocene high floods on the Planina Polje, Classical Dinaric Karst, Slovenia. Acta Carsologica 41 (1), 5-13. doi: https://doi.org/10.3986/ac.v41i1.44.
Šušteršič, F., 2002. Where does Underground Ljubljanica Flow? RMZ Materials and Geoenvironment, 49 (1), 61-84.
Tabari, H., 2020. Climate change impact on flood and extreme precipitation increases with water availability. Sci Rep 10, 13768 (2020). doi: https://doi.org/10.1038/s41598-020-70816-2.
Tramblay, Y., Somot, S., 2018. Future evolution of extreme precipitation in the Mediterranean. Climatic Change 151:289–302. doi: https://doi.org/10.1007/s10584-018-2300-5.
Turk, J., 2010. Dynamics of underground water in the karst catchment area of the Ljubljanica springs. Založba ZRC, Ljubljana 136 p. ISBN 978-961-254-233-7 (Carsologica 11).
Worthington, S.R.H., 2009. Diagnostic hydrogeologic characteristics of a karst aquifer (Kentucky,USA). Hydrogeology Journal 17 (7), 1665–1678. doi: 10.1007/s10040-009-0489-0.
Worthington, S.R.H., Smart, C.C., Ruland, W., 2012. Effective porosity of a carbonate aquifer with bacterial contamination: Walkerton, Ontario, Canada. J. Hydrol. 464-465, 517-527. doi: 10.1016/j.jhydrol.2012.07.046.
Prenosi
Objavljeno
Verzije
- 2023-03-08 (2)
- 2023-02-16 (1)
Kako citirati
Številka
Rubrike
Licenca
To delo je licencirano pod Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 mednarodno licenco.
Avtorji jamčijo, da je delo njihova avtorska stvaritev, da v njem niso kršene avtorske pravice tretjih oseb ali kake druge pravice. V primeru zahtevkov tretjih oseb se avtorji zavezujejo, da bodo varovali interese založnika ter da bodo povrnili morebitno škodo.
Podrobneje v rubriki: Prispevki