To je stara verzija objvaljena 2023-03-08. Preberite najnovejšo verzijo.

Mikro-korozija stalagmita v jami Küpeli, južna Turčija

Avtorji

  • Muhsin Eren Department of Geological Engineering, Mersin University
  • Muhammetmyrat Palvanov Department of Geological Engineering, Mersin University
  • Selahattin Kadir Department of Geological Engineering, Eskişehir Osmangazi University
  • Selim Kapur Department of Soil Science and Plant Nutrition, Çukurova University

DOI:

https://doi.org/10.3986/ac.v51i2.10589

Ključne besede:

Cave, speleothem, stalagmite, micro karstification, dissolution, mineralogy, micro crystal fabric

Povzetek

V članku obravnavamo mikro-korozijske oblike v stalagmitu iz jame Küpeli v južni Turčiji. Korozijo kapnikov lahko povzroča prenikla voda, ki se  v tleh, epikrasu ali jamski atmosferi obogati  s CO2 in pronica v kapnik. V članku postavimo domnevo, da je voda iz nekdanje površine stalagmita prodrla v notranjost vzdolž vertikalnih in diagonalnih por zarezne oblike, ki so nastale s korozivnim širjenjem medkristalnih por. Te podolgovate pore so precej naključno nastajale ob cikličnih pogojih rasti stalagmita in segajo nekaj rastnih plasti globoko pod površino stalagmita, ki jo je kasneje prekrila nova plast sige. Voda je ob pronicanju vzdolž teh por dosegla relativno bolj prepustno rastno ploskev in korodirala vzdolž le-te.  Pri tem so nastale različne mikro-korozijske oblike, kot so korozijske jamice,  zaobljene in povečane kristalne meje, medkristalne pore in nanometrski kristalni skupki, ki so nastali ob porušitvi večjih kristalov ((≥ 4 μm). V korozijskih porah se je kasneje na nekaterih mestih iz prenasičene vode ponovno izločal kalcit, bodisi zgolj na robovih por bodisi kot polnilo por. V cikličnih pogojih rasti je izločanje praviloma sledilo raztapljanju, verjetno zaradi sezonske spremenljivosti dostopnega  CO2 in v vodi raztopljenega kalcita.

Prenosi

Podatki o prenosih še niso na voljo.

Literatura

Aharon, P., Rasbury, M. & V. Murgulet, 2006: Caves of Niue Island, South Pacific: Speleothems and water geochemistry.– In: Harmon, R.S. & C. Wicks (eds.) Perspectives on karst geomorphology, hydrology, and geochemistry – A tribute volume to Derek, C., Ford and William B. White.- Geological Society of America Special Paper 404, 283–295.

Akgöz, M., 2012: Göksu nehri ve Lamas kanyonu (Mersin) arasında kalan bölgenin karst evrimi, PhD Thesis, Mersin University, Turkey, pp. 290.

Bar-Matthews, M., Ayalon, A. & A. Kaufman, 1997: Late Quaternary palaeoclimate in the eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave, Israel.– Quaternary Research 47, 2, 155–168.

Domínguez-Villar, D., Wang, X., Cheng, H., Martín-Chivelet, J. & R.L. Edwards, 2008: A high-resolution late Holocene speleothem record from Kaite Cave, northern Spain: δ18O variability and possible causes.– Quaternary International 187, 1, 40–51.

Eren, M., 2008: Olba (Ura-Uğuralanı) jeoarkeolojisi (Silifke, Mersin). Ankara, Kültür ve Turizm Bakanlığı 24. Arkeometri Sonuçları Toplantısı, 181–192 (in Turkish)

Frisia, S., 2019: Stalactites and stalagmites.– In: White, W.B. et al. (eds) Encyclopedia of caves (3th edition). Academic Press, London, 1041–1048.

Gedik, A., Birgili, Ş., Yılmaz, H. & R. Yoldaş, 1979: Mut-Ermenek-Silifke yöresinin jeolojisi ve petrol olanakları.– Türkiye Jeoloji Kurumu Bülteni 22, 7–26 (in Turkish).

James, N.P. & P.W. Choquette, 1984: Diagenesis 9. Limestones– The Meteoric diagenetic environment.– Geoscience Canada 11, 4, 161–194.

Johnston, V.E., Martín-Pérez, A., Skok, S. & J. Mulec, 2021: Microbially-mediated carbonate dissolution and precipitation; towards a protocol for ex–situ, cave–analogue cultivation experiments.– International Journal of Speleology 50, 2, 137–155.

Jones, B., 2010: Microbes in caves: Agents of calcite corrosion and precipitation.– Geological Society London Special Publications 336, 1, 7–30.

Kaufmann, G., 2003: Stalagmite growth and palaeo-climate: the numerical perspective.– Earth and Planetary Science Letters 214, 251–266.

Martín-García, R., Alonso-Zarza, A.M. & A. Martín-Pérez, 2009: Loss of primary texture and geochemical signatures in speleothems due to diagenesis: Evidences from Castañar Cave, Spain.– Sedimentary Geology 221, 141–149.

Mühlinghaus, C., Scholz, D. & A. Mangini, 2007: Modelling stalagmite growth and 13C as a function of drip interval and temperature.– Geochimica et Cosmochimica Acta 71, 2780–2790.

Neugebauer, J., 1978: Micritization of crinoids by diagenetic dissolution.– Sedimentology 25, 267–283.

Onac, B.P. & P. Forti, 2011: Minerogenetic mechanisms occurring in the cave environment: an overview.– International Journal of Speleology 40, 2, 79–98.

Özgül, N., 1983: Stratigraphy and tectonic evolution of the Central Taurides.– In: Tekeli, O. & M.C. Göncüoğlu (eds.) Proceedings of the International Symposium on the Geology of the Taurus Belt, Ankara, pp. 77–90.

Pacton, M., Breitenbach, S.F.M., Lechleitner, F.A., Vaks, A., Rollion-Bard, C., Gutareva, O.S., Osintcev, A.V. & C. Vasconcelos, 2013: The role of microorganisms in the formation of a stalactite in Botovskaya Cave, Siberia– paleoenvironmental implications.– Biogeosciences 10, 6115–6130.

Pagliara, A., De Waele, J., Forti, P., Galli, E. & A. Rossi, 2010: Speleothem and speleogenesis of the hypogenic Santa Barbara Cave System (South-west Sardinia, Italy.– Acta Carsologica 39, 3, 551–564.

Perrin, C., Prestimonaco, L., Servelle, G., Tilhac, R., Maury, M. & P. Cabrol, 2014: Aragonite–calcite speleothems: Identifying original and diagenetic features.– Journal of Sedimentary Research 84, 4, 245–269.

Scholz, D., Tolzmann, J., Hoffmann, D. L., Jochum, K. P., Spötl, C. & D.F.C. Riechelmann, 2014: Diagenesis of speleothems and its effect on the accuracy of 230Th/U-ages.– Chemical Geology 387, 74–86.

Shtober-Zisu N., Schwarcz H.P., Chow T., Omelon C.R. & G. Southam, 2014: Caves in caves: evolution of post-depositional macroholes in stalagmites.– International Journal of Speleology 43, 3, 323–334.

Thamodi, A.A.R. & S. Kumara, 2020: A geomorphological study on the diversity of micro karst landforms of a limestone cave (with special reference to Waulpane Cave in Ratnapura District).– International Journal of Recent Scientific Research 11, 38831–38842.

Turkish State Meteorological Service (DMI), 2020: Unpublished Climatic Data from 1980 to 2019, Erdemli/ Mersin 17958 Station.

Ünal-İmer, E., Shulmeister, J., Zhao, J., Uysal, I.T. & Y. Feng, 2016: High-resolution trace element and stable/radiogenic isotope profiles of late Pleistocene to Holocene speleothems from Dim Cave, SW Turkey.– Palaeogeography, Palaeoclimatology, Palaeoecology 452, 68–79.

Vaks, A., Bar-Matthews, M., Ayalon, A., Schilman, B., Gilmour, M., Hawkesworth, C.J., Frumkin, A., Kaufman, A. & A. Matthews, 2003: Paleoclimate reconstruction based on the timing of speleothem growth and oxygen and carbon isotope composition in a cave located in the rain shadow in Israel.– Quaternary Research 59, 182–193.

Verheyden, S., Nader, F.H., Cheng, H.J., Edwards, L.R. & R. Swennen, 2008: Paleoclimate reconstruction in the Levant region from the geochemistry of a Holocene stalagmite from the Jeita cave, Lebanon.– Quaternary Research 70, 3, 368–381.

White, W.B., 1997: Thermodynamic equilibrium, kinetics, activation barriers, and reaction mechanisms for chemical reactions in karst terrains.– Environmental Geology, 30, 1/2, 46–58.

Objavljeno

2023-02-16 — posodobljeno 2023-03-08

Verzije

Kako citirati

Eren, M., Palvanov, M. ., Kadir, S., & Kapur, S. (2023). Mikro-korozija stalagmita v jami Küpeli, južna Turčija. Acta Carsologica, 51(2). https://doi.org/10.3986/ac.v51i2.10589 (Original work published 16. februar 2023)

Številka

Rubrike

Original papers