Sulfuric acid speleogenesis in Greece
DOI:
https://doi.org/10.3986/ac.v53i2-3.13668Keywords:
cave, spring, karst, geomorphology, geochemistry, hydrothermalAbstract
Manifestations of sulfuric acid speleogenesis (SAS) documented in several caves in the areas of Aghia Paraskevi, Konitsa, W. Peloponnese, Elassona, Lavrion and Kammena Vourla in Greece are examined and discussed in this work. Carbonate and sulfate samples collected from caves in Aghia Paraskevi and western Peloponnese areas were investigated using methods, such as fluid inclusion, scanning electron microscopy, carbon, sulfur and oxygen stable isotopes, X-ray powder diffraction, and chemical analysis. The examined caves are mainly developed at or in the proximity of the local water table and they are related to hydrothermal springs and geothermal fields. In addition to the documentation of SAS in one case study from Aghia Paraskevi, calcite spar with a homogenization temperature peak at 280°C, indicates an early speleogenetic stage that involves meteoric-origin hydrothermal fluids under deep-seated settings. Sulfur isotope composition of sulfates (–4 ‰) is indicative for pyrite oxidation. The Konitsa caves represent a system developed at multiple altitudes that is related to the evolution of Sarantaporos River. The caves in West Peloponnese are located in two different geotectonic units. However, the caves in both units are active and share common characteristics, such as their development near sea level, morphology and fracture-guided pattern, and the presence of gypsum with δ34S values (average –26 ‰) that are plausibly related to hydrocarbons and bacterial activity. Morphological and geochemical aspects of the caves in these two regions suggest long-lasting, multiphase speleogenetic systems.
Downloads
References
Anders, B., Reischmann, T., Poller, U., Kostopoulos, D., 2005. Age and origin of granitic rocks of the eastern Vardar Zone, Greece: new constraints on the evolution of the Internal Hellenides. Journal of the Geological Society of London, 162: 857–870. https://doi.org/10.1144/0016-764904-077
Audra, P., Mocochain, L., Bigot, J. Y., Nobécourt, J. C., 2009. Morphological indicators of speleogenesis: hypogenic speleogens. Hypogene speleogenesis and karst hydrogeology of artesian basins. Simferopol: Ukrainian Institute of Speleology and Karstology, Special Paper 1: 23-32.
Audra, P., Gázquez, F., Rull, F., Bigot, J.-Y., Camus, H., 2015. Hypogene Sulfuric Acid Speleogenesis and rare sulfate minerals in Baume Galinière Cave (Alpes-de-Haute-Provence, France). Record of uplift, correlative cover retreat and valley dissection. Geomorphology, 247: 25-34. https://doi.org/10.1016/j.geomorph.2015.03.031
Auler, A. S., Smart, P. L., 2003. The influence of bedrock‐derived acidity in the development of surface and underground karst: evidence from the Precambrian carbonates of semi‐arid northeastern Brazil. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 28(2): 157-168. https://doi.org/10.1002/esp.443
Barton, H. A., Taylor, N. M., Kreate, M. P., Springer, A. C., Oehrle, S. A., Bertog, J. L. (2007). The impact of host rock geochemistry on bacterial community structure in oligotrophic cave environments. International Journal of Speleology, 36, 93-104.
Botziolis, C., Maravelis, A., Pantopoulos, G., Kostopoulou, S., Catuneanu, O., Zelilidis, A, 2021. Stratigraphic and paleogeographic development of a deep-marine foredeep: Central Pindos foreland basin, western Greece. Marine and Petroleum Geology, 128, 105012. https://doi.org/10.1016/j.marpetgeo.2021.105012
Botziolis, C. Maravelis, A. Catuneanu, O. Zelilidis, A. 2023. Controls on sedimentation in a deep-water foredeep: Central Pindos foreland basin, western Greece. Basin Research (early view). https://doi.org/10.1111/bre.12804
Bourli, N., Pantopoulos G., Maravelis AG., Zoumpoulis E., Iliopoulos G., Pomoni-Papaioannou F., Kostopoulou S., Zelilidis A. 2019a: Late Cretaceous to Early Eocene geological history of the eastern Ionian Basin, southwestern Greece: an integrated sedimentological and bed thickness statistics analysis. Cretaceous Research, 98:47–71. https://doi.org/10.1016/j.cretres.2019.01.026
Bourli, N., Kokkaliari, M., Iliopoulos, I., Pe-Piper, G., Piper, DJW., Maravelis AG., Zelilidis A. 2019b: Mineralogy of siliceous concretions, Cretaceous of Ionian zone, western Greece: implication for diagenesis and porosity. Marine and Petroleum Geology, 105:45–63. https://doi.org/10.1016/j.marpetgeo.2019.04.011
Cundy, A. B., Gaki-Papanastassiou, K., Papanastassiou, D., Maroukian, H., Frogley, M. R., Cane, T. 2010. Geological and geomorphological evidence of recent coastal uplift along a major Hellenic normal fault system (the Kamena Vourla fault zone, NW Evoikos Gulf, Greece). Marine Geology, 271(1-2), 156-164. https://doi.org/10.1016/j.margeo.2010.02.009
D’Angeli, I.M., Vattano, M., Parise, M., De Waele, J., 2017. The Coastal Sulfuric Acid Cave System of Santa Cesarea Terme (Southern Italy). In: Klimchouk, A., N. Palmer, A., De Waele, J., S. Auler, A., Audra, P. (eds) Hypogene Karst Regions and Caves of the World. Cave and Karst Systems of the World, pp. 161-168, Springer, Cham. https://doi.org/10.1007/978-3-319-53348-3_9
D’angeli, I. M., Parise, M., Vattano, M., Madonia, G., Galdenzi, S., De Waele, J. 2019. Sulfuric acid caves of Italy: A review. Geomorphology, 333, 105-122. https://doi.org/10.1016/j.geomorph.2019.02.025
De Graciansky P.C., De Dardeau G., Lemoine M., Tricart P., 1989. The inverted margin of the French Alps. Journal of the Geological Society of London, Special publ 44(1):87–104. https://doi.org/10.1144/GSL.SP.1989.044.01.06
De Waele, J., Audra, P., Madonia, G., Vattano, M., Plan, L., D’angeli, I. M., Bigot, J.-Y. Nobécourt, J.-C., 2016. Sulfuric acid speleogenesis (SAS) close to the water table: examples from southern France, Austria, and Sicily. Geomorphology, 253, 452-467. https://doi.org/10.1016/j.geomorph.2015.10.019
De Waele, J., D'Angeli, I.M., Audra, P., Plan, L., Palmer, A.N., 2024. Sulfuric acid caves of the world: A review. Earth-Science Reviews, 250, 104693. https://doi.org/10.1016/j.earscirev.2024.104693
Doutsos, T., Piper, G., Boronkay, K., Koukouvelas, I., 1993. Kinematics of the Central Hellenides. Tectonics 12:936–953. https://doi.org/10.1029/93TC00108
Dublyansky, Y. V. 2013. 6.6 Karstification by Geothermal Waters. In: Schroder, J. & Frumkin, A. (eds.) Treatise on Geomorphology, pp. 57–71. San Diego, CA. http://dx.doi.org/10.1016/B978-0-12-374739-6.00110-X
Etiope, G., Papatheodorou, G., Christodoulou, D.P., Ferentinos, G., Sokos, E., Favali, P., 2006. Methane and hydrogen sulfide seepage in the northwest Peloponnesus petroliferous basin (Greece): origin and geohazard. AAPG Bulletin, 90(5):701–713. https://doi.org/10.1306/11170505089
Farrant, A. R., Smart, P. L., 2011. Role of sediment in speleogenesis; sedimentation and paragenesis. Geomorphology, 134(1-2), 79-93. https://doi.org/10.1016/j.geomorph.2011.06.006
Ganas, A., White, K., Wadge, G., 1997. SPOT DEM analysis for fault segment mapping in the Lokris region, central Greece. EARSEL advances in remote sensing, 5, 46-53.
Hill, C. 1995. Sulfur redox reactions: Hydrocarbons, native sulfur, Mississippi Valley-type deposits, and sulfuric acid karst in the Delaware Basin, New Mexico and Texas. Environmental Geology 25, 16–23. https://doi.org/10.1007/BF01061826
Jones, D. S., Polerecky, L., Galdenzi, S., Dempsey, B. A., Macalady, J. L., 2015. Fate of sulfide in the Frasassi cave system and implications for sulfuric acid speleogenesis. Chemical Geology, 410, 21-27. https://doi.org/10.1016/j.chemgeo.2015.06.002
Karakitsios, V., 1995. The influence of preexisting structure and halokinesis on organic matter preservation and thrust system evolution in the Ionian basin, northwestern Greece: AAPG Bulletin, 79: 960–980. https://doi.org/10.1306/8D2B2191-171E-11D7-8645000102C1865D
Karakitsios, V., 2013. Western Greece and Ionian Sea petroleum systems. AAPG Bulletin, 97 (9): 1567–1595. https://doi.org/10.1306/02221312113
Kesler, E.S., 2005. Fluids in Planetary Systems: ore-Forming Fluids. Elements, 1(1): 13–18.
Klimchouk, A., 2017. Types and Settings of Hypogene Karst. In: Klimchouk, A., N. Palmer, A., De Waele, J., S. Auler, A., Audra, P. (eds) Hypogene Karst Regions and Caves of the World. Cave and Karst Systems of the World, pp. 1-39. Springer, Cham. https://doi.org/10.1007/978-3-319-53348-3_1
Klimchouk, A. B., Eftimi, R., Andreychouk, V. N., 2022. Hypogene karst in the External Albanides and its pronounced geomorphological effect. Proceedings of the 18th International Congress of Speleology, Vol. IV - Karstologia Mémoires n°24, Geomorphology and Speleogenesis: : 205-208, Savoie Mont-Blanc.
Lazaridis, G., 2017. Hypogene Speleogenesis in Greece. In: Klimchouk, A., N. Palmer, A., De Waele, J., S. Auler, A., Audra, P. (eds) Hypogene Karst Regions and Caves of the World. Cave and Karst Systems of the World, pp. 225-239, Springer, Cham. https://doi.org/10.1007/978-3-319-53348-3_14
Lazaridis, G., Melfos, V. Papadopoulou, L. 2011. The first cave occurrence of orpiment (As2S3) from the sulfuric acid caves of Aghia Paraskevi (Kassandra Peninsula, N. Greece). International Journal of Speleology, 40: 133-139. http://dx.doi.org/10.5038/1827-806X.40.2.6
Manakos, A., 1999. Hydrogeological behavior and stochastic simulation of Krania Elassona karstic aquifer, Thessaly. [PhD Thesis] Aristotle University of Thessaloniki, pp. 214.
Manakos, A., Ntona, M. M., Kazakis, N., Chalikakis, K., 2018. Enhanced characterization of the Krania–Elassona structure and functioning allogenic karst aquifer in central Greece. Geosciences, 9(1): 15. https://doi.org/10.3390/geosciences9010015
Maravelis, A.G., Makrodimitras, G., Zelilidis, A., 2012. Hydrocarbon prospectivity in Western Greece. Oil and gas European Magazine 38(2): 84-89.
Merdenisianos, K., 1994. Thermal caves "Kaiafa" and "Kounoupeli" of the Prefecture of Ilia: thermal cave of "Anigridon Nymphon" of Kaiafa baths of the prefecture of Ilia. Bulletin of the Hellenic Speleological Society, 21, 413-426.
Onac, B., Sumrall, J.G., Tamas, T., Povara, I., Kearns, J., Darmiceanu, V., Veres, D.S., Lascu, C., 2009. The relationship between cave minerals and H2S-rich thermal waters along the Cerna Valley (SW Romania). Acta Carsologica, 38(1), 67-79.
Onac, B. P., Forti, P., 2011. State of the art and challenges in cave minerals studies. Studia UBB Geologia, 56(1), 33-42. http://dx.doi.org/10.5038/1937-8602.56.1.4
Onac, B. P., Wynn, J. G. Sumrall, J. B., 2011. Tracing the sources of cave sulfates: a unique case from Cerna Valley, Romania. Chemical Geology, 288, 105-114. https://doi.org/10.1016/j.chemgeo.2011.07.006
Ottens, B., Voudouris, P., 2018. Griechenland: Mineralien-Fundorte-Lagerstätten, Christian Weise Verlag, Munchen, Germany, 480 pp. ISBN 978-3-921656-86-0.
Pe-Piper, G., Doutsos, T., Mijara, A., 1993. Petrology and regional significance of the Hercynian granitoid rocks of the Olympiada area, northern Th essaly, Greece. Chemie der Erde Geochemistry 53, 21–36.
Petrocheilou, A., 1974. The cave "Peristeri" in Megalochori, Methana. Bulletin of Hellenic Speleological Society, 12(5): 142-151.
Plan, L., Tschegg, C., De Waele, J., Spötl, C., 2012. Corrosion morphology and cave wall alteration in an Alpine sulfuric acid cave (Kraushöhle, Austria). Geomorphology, 169, 45-54. https://doi.org/10.1016/j.geomorph.2012.04.006
Polyak, V. J., Provencio, P., 2001. By-product materials related to H2S-H2SO4 influenced speleogenesis of Carlsbad, Lechuguilla, and other caves of the Guadalupe Mountains, New Mexico. Journal of Cave and Karst Studies, 63(1), 23-32.
Rieck, B., Kolitsch, U., Voudouris, P., Giester, G., Tzeferis, P., 2018. More new finds from Lavrion, Greece. Mineralien Welt 5, 32-77 (in German).
Swezey, C.S., Piatak, N.M., Seal, R.R., Wandless G.A., 2002. Sulfur and oxygen isotopic composition of gypsum in caves of Virginia and West Virginia. Geological Society of America, Abstracts with Programs, 34: 231.
Temovski, M., Audra, P., Mihevc, A., Spangenberg, J. E., Polyak, V., McIntosh, W., Bigot, J. Y., (2013). Hypogenic origin of Provalata Cave, Republic of Macedonia: a distinct case of successive thermal carbonic and sulfuric acid speleogenesis. International Journal of Speleology, 42(3), 7. http://dx.doi.org/10.5038/1827-806X.42.3.7
Temovski, M., Futó, I., Túri, M., Palcsu, L., 2018. Sulfur and oxygen isotopes in the gypsum deposits of the Provalata sulfuric acid cave (Macedonia). Geomorphology, 315, 80-90. https://doi.org/10.1016/j.geomorph.2018.05.010
Vasileiou, E., Koumantakis, I., 2013. The role of Kefalovruso and Amourio springs in the hydrodynamic conditions of Potamia Elassona Basin. Bulletin of the Geological Society of Greece, 47(2), 801-810.
Vaxevanopoulos, M., 2006. Tectonic conditions in the speleogenetic process of Melissotripa cave in Kefalovriso of Elassona (Central Greece). [Msc Thesis] Aristotle University of Thessaloniki, pp. 1-106.
Vourlakos, N.M., Fitros, M.G., 2019. The Minerals of Lavrion; The Scientific Society of Lavreotiki: Lavrion, Greece, No. 13; ISBN 978-960-85333-6.
Webb, J. A., 2021. Supergene sulphuric acid speleogenesis and the origin of hypogene caves: evidence from the Northern Pennines, UK. Earth Surface Processes and Landforms, 46(2), 455-464. https://doi.org/10.1002/esp.5037
White, W. B., 2015. Minerals and speleothems in Burnsville Cove caves. The Caves of Burnsville Cove, Virginia: Fifty Years of Exploration and Science, 421-441.
Wynn, J. G., Sumrall, J. B. Onac, B. P., 2010. Sulfur isotopic composition and the source of dissolved sulfur species in thermo-mineral springs of the Cerna Valley, Romania. Chemical Geology, 271, 31-43. https://doi.org/10.1016/j.chemgeo.2009.12.009
Zelilidis, A., Maravelis A.G., Tserolas, P., Konstantopoulos, P.A., 2015. An overview of the Petroleum systems in the Ionian zone, onshore NW Greece and Albania. Journal of Petroleum Geology, 38(3):331-347. https://doi.org/10.1111/jpg.12614
Zoumpouli, E., Maravelis, A.G., Iliopoulos, G., Botziolis, C., Zygouri, V., Zelilidis, A., 2022. Re-Evaluation of the Ionian Basin Evolution during the Late Cretaceous to Eocene (Aetoloakarnania Area, Western Greece). Geosciences; 12(3):106. https://doi.org/10.3390/geosciences12030106.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors guarantee that the work is their own original creation and does not infringe any statutory or common-law copyright or any proprietary right of any third party. In case of claims by third parties, authors commit their self to defend the interests of the publisher, and shall cover any potential costs.
More in: Submission chapter