Unraveling the functioning of the vadose zone in alpine karst aquifers: New insights from a tracer test in the Migovec cave system (Julian alps, NW Slovenia)

Authors

  • Franci Gabrovšek Research Centre of the Slovenian Academy of Sciences and Arts, Karst Research Institute, Postojna, Slovenia https://orcid.org/0000-0001-8397-6487
  • Matej Blatnik Research Centre of the Slovenian Academy of Sciences and Arts, Karst Research Institute, Postojna, Slovenia
  • Nataša Ravbar Research Centre of the Slovenian Academy of Sciences and Arts, Karst Research Institute, Postojna, Slovenia
  • Jana Čarga Jamarska sekcija PD Tolmin
  • Miha Staut Jamarski klub Železničar, Ljubljana
  • Metka Petrič Research Centre of the Slovenian Academy of Sciences and Arts, Karst Research Institute, Postojna, Slovenia

DOI:

https://doi.org/10.3986/ac.v52i2-3.13348

Keywords:

karst aquifer, unsaturated zone, tracer test, Adriatic-Black Sea watershed, Julian Alps

Abstract

The aquifers of alpine karst and high karst plateaus are abundant water resources. They are difficult to characterise due to their complex, partly glaciokarstic, evolution in active tectonic environments, and an unsaturated zone up to two kilometres thick. We present and discuss the results of a tracing test in the alpine karst of the Julian Alps (Slovenia), more precisely in the Migovec System, the longest cave system in Slovenia (length = 43 km, depth = 972 m). The cave extends below a mountain ridge that separates the Soča and Sava Valleys, thus forming a topographic divide between the Adriatic and Black Sea basins, which gives the test greater regional significance. In early September 2019, three kilograms of uranine were injected into a perched lake in a remote part of the system, approximately 900 metres below the plateau and 100 metres above the low water table. All known springs in the valleys on either side of the mountain were monitored by manual or instrumental sampling and a field fluorometer. Due to the unexpectedly dry season, no tracer was detected at any site for two months until a heavy rainfall event in early November. Subsequently, about 60-65 % of the tracer mass appeared within 60 hours in the Tolminka River. No tracer was detected at other sites, either because
it was not present or because it was highly diluted. The study suggests that the lake containing the tracer is bypassed by the vadose flow and that the tracer was only mobilised during large events when the lake became part of the epihreatic flow. The linear peak flow velocity from the injection site to the Tolminka Spring was only about 1.7 m/h. However, assuming that the tracer was only mobilised by the large rain event, the velocity would be 70 m/h. The study highlights the challenges and pitfalls of water tracing in alpine karst systems and suggests ways to avoid them.

Downloads

Download data is not yet available.

References

ARSO, 2019. Slovenian Environment Agency, Interactive weather. https://meteo.arso.gov.si/met/en/app/webmet/ [Accessed 19 November 2019].

ARSO, 2020a. Slovenian Environment Agency, Archive hydrological data. http://vode.arso.gov.si/hidarhiv/pov_arhiv_tab.php [Accessed 6 January 2020].

ARSO, 2020b. Slovenian Environment Agency, Hydrological data - automatic gauging stations and observations. https://www.arso.gov.si/vode/podatki/amp/Ht_30.html [Accessed 6 January 2020].

ARSO, 2022. Slovenian Environment Agency, Meteorological data archive. https://meteo.arso.gov.si/met/sl/app/webmet/ [Accessed 15 November 2022].

Atlas okolja, 2022. Environmental Atlas, Lidar, Hydrogeological map and Tracer tests data. http://gis.arso.gov.si/atlasokolja/profile.aspx?id=Atlas_Okolja_AXL@Arso&culture=en-US [Accessed 15 November 2022].

Becker, A., 2005. Runoff Processes in Mountain Headwater Catchments: Recent Understanding and Research Challenges. In: Huber, U. M. et al. (Eds.) Global Change and Mountain Regions. Springer Netherlands, pp. 283-295. DOI: 10.1007/1-4020-3508-X

Benischke, R., Goldscheider, N., Smart, C.C., 2007. Tracer techniques. In: Goldscheider, N., Drew, D. (Eds.) Methods in Karst Hydrogeology. Taylor and Francis, London, pp. 147-170.

Benischke, R., Harum, T., Reszler, C., Saccon, P., Ortner, G., Ruch, C., 2010. Karstentwässerung im Kaisergebirge (Tirol, Österreich)– Abgrenzung hydrographischer Einzugsgebiete durch Kombination hydrogeologischer Untersuchungen mit Isotopenmethoden und hydrologischer Modellierung. Grundwasser – Zeitschrift der Fachsektion Hydrogeologie, 15: 43-57. DOI: 10.1007/s00767-009-0124-y

Brenčič, M., Vreča, P., 2016. Hydrogeological and isotope mapping of the karstic River Savica in NW Slovenia. Environmental Earth Sciences, 75: 651. DOI: 10.1007/s12665-016-5479-7

Buser, S., 1986. Basic Geological Map of SFRJ 1:100.000, sheet Tolmin in Videm. Zvezni geološki zavod, Beograd.

Cave Registry, 2022. Cadastre of caves of the Karst Research Institute ZRC SAZU and Cave Association of Slovenia. Postojna, Ljubljana.

Collados-Lara, A.-J., Pardo-Igúzquiza, E., Pulido-Velazquez, D., 2019. A distributed cellular automata model to simulate potential future impacts of climate change on snow cover area. Advances in Water Resources, 124: 106-119. https://doi.org/10.1016/j.advwatres.2018.12.010.

Cucchi, F., F. Gemiti, P. Manca, Semeraro, R., 1997. Underground water tracing in the east part of the karst Canin massif (Led Zeppelin Abyss) (Western Julian Alps). Ipogea, 2: 141-150.

De la Torre, B., Mudarra, M., Andreo, B., 2020. Investigating karst aquifers in tectonically complex alpine areas coupling geological and hydrogeological methods. Journal of Hydrology X, 6, 100047. https://doi.org/10.1016/j.hydroa.2019.100047

Dobler, C., Bürger, G., Stötter, J., 2013. Simulating future precipitation extremes in a complex alpine catchment. Natural Hazards and Earth System Sciences, 13: 263–277.

Filippini, M., Squarzoni, G., De Waele, J., Fiorucci, A., Vigna, B., Grillo, B., Gargini, A., 2018. Differentiated spring behavior under changing hydrological conditions in an alpine karst aquifer. Journal of Hydrology, 556: 572–584. https://doi.org/10.1016/j.jhydrol.2017.11.040

Finger, D., Hugentobler, A., Huss, M., Voinesco, A., Wernli, H., Fischer, D., Weber, E., Jeannin, P.-Y., Kauzlaric, M., Wirz, A., Vennemann, T., Hüsler, F., Schädler, B., Weingartner, R., 2013. Identification of glacial meltwater runoff in a karstic environment and its implication for present and future water availability. Hydrology Earth System Sciences, 17: 3261–3277. DOI:10.5194/hess-17-3261-2013, 2013.

Frank S, Goeppert N, Goldscheider N., 2021. Improved understanding of dynamic water and mass budgets of high-alpine karst systems obtained from studying a well-defined catchment area. Hydrological Processes, 35: e14033. https://doi.org/10.1002/hyp.1403

Frost, J.M.F., Hooper, J., 2007. The Hollow Mountain (1994-2006), volume 1. London (ICCC, JSPDT).

Gams, I., 1966. Poročilo o barvanju v Dimnicah in v Triglavskem breznu leta 1964. Acta Carsologica, 4: 153-156 (in Slovenian).

Goldscheider, N., 2005. Fold structure and underground drainage pattern in the alpine karst system Hochifen-Gottesacker. Eclogae Geologicae Helvetiae, 98/1: 1-17. DOI: 10.1007/s00015-005-1143-z.

Goldscheider, N., Chen, Z., Auler, A.S., Bakalowicz, M., Broda, S., Drew, D., Hartmann, H., Jiang, G., Moosdorf, N., Stevanovic, Z., Veni, G., 2020. Global distribution of carbonate rocks and karst water resources. Hydrogeology Journal. https://doi.org/10.1007/s10040-020-02139-5.

Goldscheider, N., Neukum, C., 2010. Fold and fault control on the drainage pattern of a double-karst-aquifer system, Winterstaude, Austrian Alps. Acta Carsologica, 39/2: 173-186. DOI: http://dx.doi.org/10.3986/ac.v39i2.91.

Gremaud, V., Goldscheider, N., Savoy, L., Favre, G., Masson, H., 2009. Geological structure, recharge processes and underground drainage of a glacierised karst aquifer system, Tsanfleuron-Sanetsch, Swiss Alps. Hydrogeology Jounal, 17: 1833-1848. DOI:10.1007/s10040-009-0485-4, 2009.

Janež, J., 2002. Veliki kraški izviri v zgornjem Posočju = Karst springs in the Upper Soča Valley. Geologija, 45/2: 393-400.

Jurkovšek, B., 1986. Basic Geological Map of SFRJ 1:100.000, sheet Beljak in Ponteba. Zvezni geološki zavod, Beograd.

Kaminsky, E., Plan, L., Wagner, T., Funk, B., Oberender P., 2021. Flow dynamics in a vadose shaft – a case study from the Hochschwab karst massif (Northern Calcareous Alps, Austria). International Journal of Speleology, 50/2: 157-172. https://doi.org/10.5038/1827-806X.50.2.2375

Kastelic, V., Vrabec, M., Cunningham, D., Gosar, A., 2008. Neo-Alpine structural evolution and present-day tectonic activity of the eastern Southern Alps: the case of the Ravne Fault, NW Slovenia. Journal of Structural Geology, 30/8: 963-975. DOI: 10.1016/j.jsg.2008.03.009

Kogovšek, J., Petrič, M., 2004. Advantages of longer-term tracing -- three case studies from Slovenia. Environmental geology, 47: 76-83.

Kraller, G., Strasser, U., Franz, H., 2011. Effect of Alpine karst on the hydrology of the Berchtesgadener Ache basin: a comprehensive summary of karst research in the Berchtesgaden Alps. Journal on Protected Mountain Areas Research and Management, 3, 1. http://epub.oeaw.ac.at/eco.mont

Lauber, U., Goldscheider, N., 2014. Use of artificial and natural tracers to assess groundwater transit-time distribution and flow systems in a high-alpine karst system (Wetterstein Mountains, Germany). Hydrogeology Journal, 22/8: 1807-1824. DOI: 10.1007/s10040-014-1173-6.

Maloszewski, P., Stichler, W., Zuber, A., Rank, D., 2002. Identifying the flow systems in a karstic-fissured-porous aquifer, the Schneealpe, Austria, by modelling of environmental 18O and 3H isotopes. Journal of Hydrology, 256/1-2: 48-59. DOI: 10.1016/S0022-1694(01)00526-1.

Mudarra, M., Andreo, B., 2011. Relative importance of the saturated and the unsaturated zones in the hydrogeological functioning of karst aquifers: the case of Alta Cadena (Southern Spain). Journal of Hydrology, 397: 263-280. DOI: 10.1016/j.jhydrol.2010.12.005.

Müller, M. H., Weingartner, R., Alewell, C., 2013. Importance of vegetation, topography and flow paths for water transit times of base flow in alpine headwater catchments. Hydrology and Earth System Sciences, 17/4: 1661-1679. DOI: 10.5194/hess-17-1661-2013.

Novak, D., 1990. Novejša sledenja kraških voda v Sloveniji po letu 1965. Geologija, 33: 461-478. DOI: 10.5474/geologija.1990.012 (in Slovenian).

Novak, D., 1995. Podzemeljske vode v Kamniških in Savinjskih Alpah. Geologija, 37-38: 415-435. DOI: 10.5474/geologija.1995.016 (in Slovenian).

Parise, M., Gabrovsek, F., Kaufmann, G., Ravbar, N., 2018. Recent advances in karst research: from theory to fieldwork and applications. In: Parise, M., Gabrovsek, F., Kaufmann, G., Ravbar, N., (Eds.), Advances in karst research: Theory, fieldwork and applications. Geological Society London, Special Publications, 466 pp. https://doi.org/10.1144/SP466.26

Petrič, M., 2004. Alpine karst waters in Slovenia. Acta Carsologica, 33/1: 11-24.

Petrič, M., Kogovšek, J., Ravbar, N., 2018. Effects of the vadose zone on groundwater flow and solute transport characteristics in mountainous karst aquifers: the case of the Javorniki-Snežnik massif (SW Slovenia). Acta Carsologica, 47/1: 35-51.DOI: 10.3986/ac.v47i1.5144.

Petrič, M., Ravbar, N., Gostinčar, P., Krsnik, P., Gacin, M., 2020. GIS database of groundwater flow characteristics in carbonate aquifers: tracer test inventory from Slovenian karst. Applied geography, 118, 8 pp. DOI: 10.1016/j.apgeog.2020.102191.

Placer, L., 1999. Contribution to the macrotectonic subdivision of the border region between Southern Alps and External Dinarides. Geologija, 41: 223-255. DOI: 10.5474/geologija.1998.013.

Poulain, A., Watlet, A., Kaufmann, O., Van Camp, M., Jourde, H., Mazzilli, N., Rochez, G., Deleu, R., Quinif, Y., Hallet, V., 2018. Assessment of groundwater recharge processes through karst vadose zone by cave percolation monitoring. Hydrological Processes, 32: 2069-2083. https://doi.org/10.1002/hyp.13138

Racine, T., 2019a. The Hollow Mountain III (2013-2017), Volume 3. London (ICCC, JSPDT).

Racine, T., 2019b. The Migovec System, a deep alpine cave system of the Julian Alps, NW Slovenia.-Die Höhle, 70/1-4: 57-75.

Ravbar, N., Petrič, M., Blatnik, M., Švara, A., 2021. A multi-methodological approach to create improved indicators for the adequate karst water source protection. Ecological Indicators, 126, 107693. https://doi.org/10.1016/j.ecolind.2021.107693

Rössler, O., Diekkrüger, B., Löffler, L., 2012. Potential drought stress in a Swiss mountain catchment–Ensemble forecasting of high mountain soil moisture reveals a drastic decrease, despite major uncertainties. Water Resources Research, 48: 1-19.

Skoberne, P. 1988. Hundred natural wanders of Slovenia. Prešernova družba, Ljubljana (in Slovenian).

Staut, M., Stržinar A., 2020. Poskus sledenja vodnih povezav pod Komno. Bilten Jamarskega kluba Železničar, 32: 37-42 (in Slovenian).

Stevanović, Z., 2018. Global distribution and use of water from karst aquifers. In Parise, M., Gabrovšek, F., Kaufmann, G., Ravbar, N. (Eds.). Advances in karst research: Theory, fieldwork and applications (Vol. 466, pp. 217-236). Geological Society of London, Special Publications.

Šmuc, A., 2005. Jurassic and Cretaceous stratigraphy and sedimentary evolution of the Julian Alps, NW Slovenia. ZRC Publishing, Ljubljana, 98 pp.

Trišič, N., Bat, M., Polajnar, J., Pristov, J., 1997. Water balance investigations in the Bohinj region. In: Kranjc, A. (Ed). Tracer Hydrology, pp. 295-298.

Trišič, N., 2014. Poročilo o izvedbi in rezultatih sledilnega poskusa na območju Vogla v letu 2002. Internal report, Slovenian Environment Agency (in Slovenian).

Turk, J., Malard, A., Jeannin, P. Y., Petrič, M., Gabrovšek, F., Ravbar, N., Vouillamoz, J., Slabe, T., Sordet, V., 2015. Hydrogeological characterization of groundwater storage and drainage in an alpine karst aquifer (the Kanin massif, Julian Alps). Hydrological Processes, 29/8: 1986-1998. DOI: 10.1002/hyp.10313.

Vincenzi, V., Riva, A., Rossetti, S., 2011. Towards a better knowledge of Cansiglio karst system (Italy): results of the first successful groundwater tracer test. Acta Carsologica, 40/1: 147-159.

Zini, L., 2014. Inquadramento dell'area pilota dell'acquifero carsico del Monte Canin. Prova di tracciamento. Final conference presentation "ASTIS" Acque Sotterranee e di Transizione Isonzo / Soča (Podzemne vode čezmejnih vodonosnikov Isonzo / Soča). DIVIG Trieste University, 31 pp. https://docplayer.net/4796116-Final-conference-astis-podzemne-vode-cezmejnih-vodonosnikov-isonzo-soca-acque-sotterranee-e-di-transizione-isonzo-soca.html

Downloads

Published

2023-12-13

How to Cite

Gabrovšek, F., Blatnik, M., Ravbar, N., Čarga, J. ., Staut, M., & Petrič, M. (2023). Unraveling the functioning of the vadose zone in alpine karst aquifers: New insights from a tracer test in the Migovec cave system (Julian alps, NW Slovenia). Acta Carsologica, 52(2-3). https://doi.org/10.3986/ac.v52i2-3.13348

Issue

Section

Original papers