Morphological and phenological shifts in the Plantago lanceolata L. species as linked to climate change over the past 100 years
Keywords:
climate change, Plantago lanceolata, morphology, phenology, herbarium, Kyiv regionAbstract
Herbarium collections have proven to be irreplaceable information base in recent studies directed towards revealing shifts in plants phenology and morphology caused by climate change. We examined eight parameters of morphological traits in the perennial herb species Plantago lanceolata L. collected in the wild between 1905 and 2019 and stored at the KW-herbarium (Kyiv, Ukraine) to find out if there were changes in plants' organ sizes during the last 114 years. For this period, we also calculated 13 climatic parameters obtained from meteorological records from the State archive that gave us the opportunity to check if there are any relations between the climate change in Kyiv region and shifts in morphological parameters of plants. Our results have shown Plantago lanceolata leaf blades, petioles and spikes had become significantly longer with time, increasing 3.0cm, 2.1cm and 0.6cm respectively. The Co-inertia analysis revealed that 34% of the morphological changes was attributed to climate change. The analysis also demonstrated that leaf length correlated more with raised temperatures when plants were in flower, while spike length depended on the temperatures during bud development. Received knowledge can be used to reveal rapid evolutionary processes of the Plantago species and predicting their further course for the construction of historical climate models based on the leaves traits.
Downloads
References
Ackerly, D., Knight, C., Weiss, S., Barton, K., Starmer K. 2002: Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia 130: 449–457. https://doi.org/10.1007/s004420100805.
Anderson, J.T. 2016: Plant fitness in a rapidly changing world. New phytologist 210: 81–87. https://doi.org/10.1111/nph.13693.
Antonovics, J. & Primack, R. 1982: Experimental ecological genetics in Plantago. VI. The demography of seedling transplants of P. lanceolata. Journal of Ecology 70: 55–75.
Baruch, Z., Christmas, M.J., Breed, M.F., Guerin, G.R., Caddy‐Retalic, S., McDonald, J., Jardine, D.I., Leitch, E., Gellie, N., Hill, K., McCallum, K., Lowe, A.J. 2016: Leaf trait associations with environmental variation in the wide-ranging shrub Dodonaea viscosa subsp. Angustissima (Sapindaceae). Austral Ecology. https://doi.org/10.1111/aec.12474.
Bezusko, L.G., Tsymbalyuk, Z.М., Mosyakin, S.L. 2018: Spatiotemporal differentiation and distribution patterns of the genus Plantago L. (Plantaginaceae) in the plain part of Ukraine during the Allerød–Holocene. Modern Phytomorphology 12: 95–105. https://doi.org/10.5281/zenodo.1319359.
Boychenko, S., Voloshchuk, V., Movchan, Y., Serdjuchenko, N., Tkachenko, V., Tyshchenko, O., Savchenko, S. 2016: Features of climate change on Ukraine: scenarios, consequences for nature and agroecosystems. Proceedings of the National Aviation University 4 (69): 96–113. https://doi.org/10.18372/2306-1472.69.11061.
Case, L.A., Lacey, E.P., Hopkins, R.G. 1996: Parental effects in Plantago lanceolata L. II. Manipulation of grandparental temperature and parental flowering time. Heredity 76: 287–295.
Chuine, I. 2010: Why does phenology drive species distribution? Philosophical transactions of the Royal Society B 365: 3149–3160. doi: 10.1098/rstb.2010.0142.
Clifford, T.H. 1962: Insect pollination of Plantago lanceolata L. Nature 13 (193): 196.
Climate change in Eastern Europe. Belarus, Moldova, Ukraine. 2012: ENVSEC, Zoï environment network, 60 p.
Corney, D.P.A., Clark, J.Y., Tang, L.H., Wilkin, P. 2012: Automatic extraction of leaf characters from herbarium specimens. Taxon 61 (1): 231–244.
Diskin, E., Proctor, H., Jebb, M., Sparks, T., Donnelly, A. 2012: The phenology of Rubus fruticosus in Ireland: herbarium specimens provide evidence for the response of phenophases to temperature, with implications for climate warming. International Journal of Biometeorology 56: 1103. https://doi.org/10.1007/s00484-012-0524-z.
Donders, T., Hagemans, K., Dekker, S.C., de Weger, L.A., de Klerk, P., Wagner-Cremer, F. 2014: Region-specific sensitivity of anemophilous pollen deposition to temperature and precipitation. PLoS One 9 (8): e104774. https://doi.org/10.1371/journal.pone.0104774.
Dray, S., Chessel, D., Thioulouse, J. 2003: Co-inertia analysis and the linking of ecological data tables. Ecology 84: 3078–3089. doi:10.1890/03-0178.
Flora URSR: Vol. 10. 1961, Kyiv, pp. 69–90 In Ukrainian.
Gallagher, R.V., Hughes, L., Leishman, M.R. 2009: Phenological trends among Australian alpine species: using herbarium records to identify climate-change indicators. Australian Journal of Botany 57: 1–9. doi: 10.1071/BT08051.
Gonzalez-Parrado, Z., Fernandez-Gonzalez, D., Vega-Maray, A.M., Valencia-Barrera, R.M. 2015: Relationship between flowering phenology, pollen production and atmospheric pollen concentration of Plantago lanceolata (L.). Aerobiologia. doi 10.1007/s10453-015-9377-3.
Gratani, L. 2014: Plant phenotypic plasticity in response to environmental factors. Advances in Botany 2014: 208747. http://dx.doi.org/10.1155/2014/208747.
Guerin, G. & Lowe, A. 2013: Leaf morphology shift: new data and analysis support climate link. Biology Letters 9: 1–3. http://dx.doi.org/10.1098/rsbl.2012.0860.
Harrison, S. Damschen, E., Fernandez-Going, B., Eskelinen, A., Copeland, S. 2015: Plant communities on infertile soils are less sensitive to climate change. Annals of Botany 116: 1017–1022. https://doi.org/10.1093/aob/mcu230.
Jarvis, C. 2016: Dataset: Clifford Herbarium. Natural History Museum Data Portal (data.nhm.ac.uk). https://doi.org/10.5519/0022031.
Jones, C.A. & Daehler, C.C. 2018: Herbarium specimens can reveal impacts of climate change on plant phenology; a review of methods and applications. PeerJ 6: e4576. doi: 10.7717/peerj.4576.
Kara, K., Ozkaya, S., Baytok, E., Guclu, B.K., Aktug, E., Erbas, S. 2018: Effect of phenological stage on nutrient composition, in vitro fermentation and gas production kinetics of Plantago lanceolata herbage. Veterinarni Medicina 63 (06): 251–260. https://doi.org/10.17221/2/2017-VETMED.
Koval, L.V., Horshkova, L.M., Kuzmenko, L.O., Mehem, O.M., Burchak, L.V., Polyakova, A.S. 2018: Sozological peculiarities of the flora of the Desna Plateau (Ukraine). Biosystems Diversity 26 (1): 37–45. doi: 10.15421/011806.
Lacey, E. P. & Herr, D. 2000: Parental effects in Plantago lanceolata L. III. Measuring parental temperature effects in the field. Evolution 54 (4): 1207–1217. doi:10.1111/j.0014-3820.2000.tb00555.x.
Lacey, E.P. & Herr, D. 2005: Phenotypic plasticity, parental effects, and parental care in plants? I. An examination of spike reflectance in Plantago lanceolata (Plantaginaceae). American Journal of Botany 92 (6): 920–930.
Lacey, E.P. 1996: Parental effects in Plantago lanceolata. L. I. A growth chamber experiment to examine pre-and post-zygotic temperature effects. Evolution 50 (2): 865–878.
Lacey, E.P., Roach, D.A., Herr, D., Kincaid, S., Perrott, R. 2003: Multigenerational effects of flowering and fruiting phenology in Plantago lanceolata. Ecology 84 (9): 2462–2475.
Lang, P., Willems, F.M., Scheepens, J. F., Burbano, H.A., Bossdorf, O. 2019: Using herbaria to study global environmental change. New phytologist 221: 110–122. https://doi.org/10.1111/nph.15401.
Lavoie, C. & Lachance, D. 2006: A new herbarium-based method for reconstructing the phenology of plant species across large areas. American Journal of Botany 93 (4): 512–516. doi: 10.3732/ajb.93.4.512.
Lavoie, C. 2013: Biological collections in an ever changing world: Herbaria as tools for biogeographical and environmental studies. Perspectives in Plant Ecology, Evolution and Systematics 15: 68–76. http://dx.doi.org/10.1016/j.ppees.2012.10.002.
McAllister, C., McKain, M.R., Li, M., Bookout. B., Kellogg, E.A. 2018: Specimen-based analysis of morphology and the environment in ecologically dominant grasses: the power of the herbarium. Philosophical Transactions Royal Society B 374: 20170403. http://dx.doi.org/10.1098/rstb.2017.0403.
Menzel, A. 2006: European phenological response to climate change matches the warming pattern. Global Change Biology 12: 1969–1976. doi: 10.1111/j.1365-2486.2006.01193.x.
Mohandass, D., Zhao, J., Xia, Y., Campbell, J., Li, Q. 2015: Increasing temperature causes flowering onset time changes of alpine ginger Roscoea in the Central Himalayas. Journal of Asia-Pacific Biodiversity 8 (3): 191–198. https://doi.org/10.1016/j.japb.2015.08.003.
Monty, A., Bizoux, J.-P., Escarré, J., Mahy, G. 2013: Rapid plant invasion in distinct climates involves different sources of phenotypic variation. PLoS ONE 8(1): e55627. https://doi.org/10.1371/journal.pone.0055627.
Netsvetov, M., Prokopuk, Y., Didukh, Y., Romenskyy, M. 2018: Climatic sensitivity of Quercus robur L. in floodplain near Kyiv under river regulation. Dendrobiology 79: 20–33. http://dx.doi.org/10.12657/denbio.079.003.
Netsvetov, M., Prokopuk, Y., Puchałka, R., Koprowski, M., Klisz, M., Romenskyy, M. 2019: River regulation causes rapid changes in relationships between floodplain oak growth and environmental variables. Frontiers in Plant Science 10 (96): 1–11. https://doi.org/10.3389/fpls.2019.00096.
Oberbauer, S.F., Elmendorf, S.C., Troxler, T.G., Hollister, R.D., Rocha, A.V., Bret-Harte, M.S., Dawes, M.A., Fosaa, A.M., Henry, G.H. R., Høye, T.T., Jarrad, F.C., Jónsdóttir, I.S., Klanderud, K., Klein, J.A., Molau, U., Rixen, C., Schmidt, N.M., Shaver, G.R., Slider, R.T., Totland, Ø., Wahren, C.-H., Welker, J.M. 2015: Phenological response of tundra plants to background climate variation tested using the International Tundra Experiment. Philosophical transactions of the Royal Society B: 1–13. doi: 10.1098/rstb.2012.0481.
Parmesan, C. & Hanley, E. 2015: Plants and climate change: complexities and surprises. Annals of Botany 116: 849–864. doi:10.1093/aob/mcv169.
Peppe, D.J., Baumgartner, A., Flynn, A., Blonder, B. 2018: Reconstructing paleoclimate and paleoecology using fossil leaves. In Vertebrate Paleobiology and Paleoanthropology: 289–317. https://doi.org/10.1007/978-3-319-94265-0_13.
Peppe, D., Royer, D.L., Cariglino, B., Oliver, S.Y., Newman, S., Leight, E., Enikolopov, E., Fernandez‐Burgos, M., Herrera, F., Adams, J.M., Correa, E., Currano, E.D., Erickson, J.M., Hinojosa, L.F., Hoganson, J.W., Iglesias, A., Jaramillo, C.A., Johnson, K.R., Jordan, G.J., Kraft, N.J. B., Lovelock, E.C., Lusk, C.H., Niinemets, Ü., Peñuelas, J., Rapson, G., Wing, S.L., Wright, I.J. 2011: Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist 190 (3): 724–739. https://doi.org/10.1111/j.1469-8137.2010.03615.x.
Primack, D., Imbres, C., Primack, R.B., Miller-Rushing, A.J., Del Tredici, P. 2004: Herbarium specimens demonstrate earlier flowering in response to warming in Boston. American Journal of Botany 91: 1260–1264. doi: 10.3732/ajb.91.8.1260.
Prokhorova, S. 2015: Variability of the Plantago lanceolata L. morphological parameters along the transect from natural to anthropogenically disturbed sites. Chornomorski Botanical Journal 11 (4): 412–421. doi:10.14255/2308-9628/15.114/1.
Ravenscroft, C., Whitlock, R., Fridley J.D. 2015: Rapid genetic divergence in response to 15 years of simulated climate change. Global Change Biology 21: 4165–4176. https://doi.org/10.1111/gcb.12966.
Ream, T.S., Woods, D.P., Schwartz, C.J., Sanabria, C.P., Mahoy, J.A., Walters, E.M., Kaeppler, H.F., Amasino, R.M. 2014: Interaction of photoperiod and vernalization determines flowering time of Brachypodium distachyon. Plant Physiology 164: 694–709. https://doi.org/10.1104/pp.113.232678.
Reyer, C., Leuzinger, S., Rammig, A., Wolf, A., Bartholomeus, R.P., Bonfante, A., de Lorenzi, F., Dury, M., Gloning, P., Jaoudé, R.A., Klein, T., Kuster, T.M., Martins, M., Niedrist, G., Riccardi, M., Wohlfahrt, G., de Angelis, P., de Dato, G., François, L., Menzel, A., Pereira, M. 2013: Review A plant’s perspective of extremes: terrestrial plant responses to changing climatic variability. Global Change Biology 19: 75–89. https://doi.org/10.1111/gcb.12023.
Robbirt, K.M., Davy, A.J., Hutchings, M.J., Roberts, D.L. 2011: Validation of biological collections as a source of phenological data for use in climate change studies: a case study with the orchid Ophrys sphegodes. Journal of Ecology 99 (1): 235–241. https://doi.org/10.1111/j.1365-2745.2010.01727.x.
Roth-Nebelsick, A. & Konrad, W. 2019: Fossil leaf traits as archives for the past – and lessons for the future? Flora 254: 59–70. https://doi.org/10.1016/j.flora.2018.08.006.
Royer, D.L., Neyerson L.A., Adams J.M. 2009: Phenotypic plasticity of leaf shape along a temperature gradient in Acer rubrum. PloS one. doi: 10.1371/ journal.pone.0007653.
Shefferson, R.P. & Roach D.A. 2010: Longitudinal analysis of Plantago: adaptive benefits of iteroparity in a short-lived, herbaceous perennial. Ecology 91 (2): 441–447.
Sherry, R., Zhou, X., Gu, S., Arnone III, J.A., Schimel, D.S., Verburg, P.S., Wallace, L.L., Luo, Y. 2007: Divergence of reproductive phenology under climate warming. PNAS 104 (1): 198–202. https://doi.org/10.1073/pnas.0605642104.
Shipunov, A.B. 1998: Plantains (genus Plantago L. and Psyllium Mill., Plantaginaceae) of the European part of Russia and adjacent territories: PhD thesis, Moscow, 301 p. In Ukrainian.
Shiyan, N.M. 2011: National Herbarium of Ukraine – Herbarium of the M.G. Kholodny Institute of Botany, NAS of Ukraine. Herbarium of Vascular Plants (KW). In: Shiyan, N.M. (eds.): Herbaria of Ukraine. Index Herbariorum Ucrainicum. Alterpress, Kyiv, pp.87–11.
Snyder, W.E. 1948: Mechanism of the photoperiodic response of Plantago lanceolata L., a long-day plant. American Journal of Botany 35 (8): 520–525. doi: 10.2307/2438170.
Sykes, M. 2009: Climate change impacts: Vegetation. Encyclopedia of Life Sciences. doi: 10.1002/9780470015902.a0021227.
Teramura, A.H., Antonovics J., Strain, B.R. 1981: Experimental ecological genetics in Plantago IV. Effects of temperature on growth rates and reproduction in three populations of Plantago lanceolata L. (Plantaginaceae). American Journal of Botany: 68 (3): 425–434. doi: 10.2307/2442780.
Thakur, M.P., Reich, P.B., Eddy, W.C., Stefanski, A., Rich, R., Hobbie, S.E., Eisenhauer, N. 2014: Some plants like it warmer: Increased growth of three selected invasive plant species in soils with a history of experimental warming. Pedobiologia 57: 57–60. http://dx.doi.org/10.1016/j.pedobi.2013.12.002.
Valencia, E., Mendez, M., Saavedra, N., Maestre, F.T. 2016: Plant size and leaf area influence phenological and reproductive responses to warming in semiarid Mediterranean species. Perspectives in Plant Ecology, Evolution and Systematics 21: 31–40. https://doi.org/10.1016/j.ppees.2016.05.003.
Van Groenenoael, J.M. 1986: Life history characteristics of two ecotypes of Plantago lanceolata L. Acta Botanica Neerlandica 35 (2): 71–86. https://doi.org/10.1111/j.1438-8677.1986.tb00463.x.
Van Hinsberg, A. 1997: Morphological variation in Plantago lanceolata L.: effects of light quality and growth regulators on sun and shade populations. Journal of Evolutionary Biology 10: 687–701. https://doi.org/10.1046/j.1420-9101.1997.10050687.x.
Van Tienderen, P.H. & Van der Toorn, J. 1991: Genetic differentiation between populations of Plantago lanceolata. I. Local adaptation in three contrasting habitats. Journal of Ecology 79: 27–42. doi: 10.2307/2260783.
Walter, J., Kreyling, J., Singh, B.K., Jentsch, A. 2016: Effects of extreme weather events and legume presence on mycorrhization of Plantago lanceolata and Holcus lanatus in the field. Plant Biology 18: 262–270. doi:10.1111/plb.12379.
Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J.-M., Hoegh-Guldberg, O., Bairlein, F. 2002: Ecological responses to recent climate change. Nature 416: 389–395. https://doi.org/10.1038/416389a.
Willis, C.G., Ellwood, E.R., Primack, R.B., Davis, C.C. , Pearson, K.D., Gallinat, A.S., Yost, J.M., Nelson, G., Mazer, S.J., Rossington, N.L., Sparks, T.H., Soltis, P.S. 2017: Old plants, new tricks: phenological research using herbarium specimens. Trends in Ecology & Evolution 32 (7): 531–546. doi: 10.1016/j.tree.2017.03.015.
Wolf, A.A., Zavaletad, E.S., Selmants, P.C. 2017: Flowering phenology shifts in response to biodiversity loss. PNAS 114 (13): 3463–3468. https://doi.org/10.1073/pnas.1608357114.
Wolff, K. & Van Delden, W. 1987: Genetic analysis of ecological relevant morphological variability in Plantago lanceolata L. I Population characteristics. Heredity 58: 183–192.
Wolff, K. 1987: Genetic analysis of ecological relevant morphological variability in Plantago lanceolata L. Theoretical and Applied Genetics 73 (6): 903–914.
Wolkovich, E.M., Cook, B.I., Allen, J.M., Crimmins, T.M., Betancourt, J.L., Travers, S.E., Pau, S., Regetz, J., Davies, T.J., Kraft, N.J., Ault, T.R., Bolmgren, K., Mazer, S.J., McCabe, G.J., McGill, B.J., Parmesan, C., Salamin, N., Schwartz, M.D., Cleland, E.E. 2012: Warming experiments underpredict plant phenological responses to climate change. Nature 485 (7399): 494–497. doi: 10.1038/nature11014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 ZRC-SAZU
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors guarantee that the work is their own original creation and does not infringe any statutory or common-law copyright or any proprietary right of any third party. In case of claims by third parties, authors commit their self to defend the interests of the publisher, and shall cover any potential costs.
More in: Submission chapter