Impact of visits on microclimate of caves – An analytical approach

  • Jože Rakovec University of Ljubljana, Faculty of mathematics and physics (retired professor)
Keywords: cave microclimate, analytical solution, heat transport, carbone dioxide

Abstract

The theoretical basis for describing natural steady-state conditions in caves as well as for their changes in time that follow from the simple advection-diffusion equation, is given. The impacts of visits to caves – direct impacts due to anthropogenic emissions of heat and CO2, as well as indirect ones, such as illumination and possible drafts when opening the door to the cave – are estimated in dependence to the number of visitors and the size of the cave: the size with which the effects of the visits are below the detection threshold is estimated. It is shown that the sources cause linear responses, while the consequences of the exchange with the walls of the cave or with the exterior depend on time exponentially. Characteristic times for linear as well as for exponential responses are roughly estimated.

Downloads

Download data is not yet available.

References

Badino G., 1995: Fisica del clima sotterraneo. Mem. Ist. Ital. Speleo. 7, ser II, Bologna, 136 pp.
Baehr H.D. and K. Stephan, 2006: Heat and mass transfer, 2nd Ed., Springer Berlin Heidelberg, xxii + 688 pp.
Becker, T. W. and B. J. P. Kaus,, 2016: Numerical Modeling of Earth Systems: An introduction to computational methods with focus on solid Earth applications of continuum mechanics, University of Southern California, v. 1.2, 2016, retrieved Feb. 8 2019 from http://www-udc.ig.utexas.edu/external/becker/teaching-557.html
Bird, R.B., W.E. Stewart and E.N Lightfoot, 2007: Transport phenomena. Revised 2nd ed. - New York : J. Wiley & Sons, xii+905 pp.
Buchmann, N., W.-Y. Kao and J.R. Ehlenringer, 1996: Carbon dioxide concentrations within forest canopy –variation with time, stand structure, and vegetation type. Global Change Biology 2, 421-432.
Chapman, H.W, L.S. Gleason and W.E. Loomis, 1954: The corbon dioxide content of field. air. Plant physiology 29, 500-503.
Chávez-Galán, J., R. Almanaza and N. Rodríguez Cuevas, 2014: Convective heat transfer coefficients: experimental estimation and its impact on thermal building design for walls made of different mexican building materials. Concr. cem. investig. Desarro 5/2 México ene./jun. 2014, retrieved Nov. 8, 2017, available at http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-30112014000100003,.
CO2meter.com, retrieved Feb. 8 2019 from https://www.co2meter.com/blogs/news/170700807-co2-measurement-range-why-it-matters
Covington, M.D., 2015, The importance of advection for CO dynamics in the karst critical zone: An approach from dimensional analysis, in Feinberg, J., Gao, Y., and Alexander, E.C., Jr., eds., Caves and Karst Across Time: Geological Society of America Special Paper 516, p. 113–127, doi:10.1130/2015.2516(09).
Dreybrodt, W, 2011: Comments on processes contributing to the isotope composition of 13C and 18O in calcite deposited to sepleothems. Acta carsologica 40, 233-238.
Debevec, V. and J. Rakovec, 2019: Impact of visits on microclimate of caves: Part II – Verification with measured data. (to be submitted to Acta carsologica).
Ek, C., and J. Godissart, 2014: Carbon dioxide in cave air and soil air in some karstic areas of Belgium. A prospective view. Geologica Belgica 17/1, 102-106.
EngToolBox1, http://www.engineeringtoolbox.com/met-metabolic-rate-d_733.html, retrieved Nov. 2, 2017.
EngToolBox2, https://www.engineeringtoolbox.com/co2-persons-d_691.html, retrieved Nov. 7, 2017.
EngToolBox3, https://www.engineeringtoolbox.com/overall-heat-transfer-coefficient-d_434.htl, retrieved Febr. 25, 2019.
EngTollBox4 https://www.engineeringtoolbox.com/air-diffusion-coefficient-gas-mixture-temperature-d_2010.html
Faimon, J. and M. Lièbinská, 2010: Carbon dioxide in the soils and adjacent caves of the Moravian Karst. Acta carsologica 39/3, 463–475.
Fernández Cortés, Á, 2004: Caracterización microclimática de Cavidades y análisis de la influencia antrópica de su uso turístico. Tesis Doctoral. Univesidad de Almería, 425 pp.
Gabrovšek, F., W. Dreybrodtd and M. Perne, 2005: Condensation corrosion: A theoretical approach, Kondenzacijska korozija: teoretični pristop. Acta carsologica 34, 317-348.
Gabrovšek, F., W. Dreybrodt, and M. Perne, 2010: Physics of Condensation Corrosion in Caves. pp- 491-496 in B. Andreo et al. (Eds.): Advances in Research in Karst Media. Springer Berlin Heidelberg, xx+526 pp.
Gabrovšek, F. and A. Mihevc (Eds.), 17th International Karstological Schoool "Classical Karst", Postojna 2008. Cave climate : guide book & abstracts. Postojna: Karst Research Institute, Scientific Research Centre of the Slovenian Academy of Sciences and Arts, 2009. 92 pp.
Gregorič, A., J. Vaupotič and S. Šebela, 2014;. The role of cave ventilation in governing cave air temperature and radon levels (Postojna Cave, Slovenia). International journal of climatology, 34, 1488-1500.
Gunn, J. (Ed.), 2004: Encyclopedia of Caves and Karst Science, Fitzroy Dearborn, An imprint of the Taylor and Francis Group, New York London, xx+1940 pp.
Gupta H. K. and S. Roy, 2007: Geothermal Energy: An Alternative Resource for the 21st Century 1st Edition. Elsevier Science, 292 pp. ISBN-10: 044452875X, ISBN-13: 978-0444528759.
Kundu, P.K. and I.M. Cohen, 2002: Fliud mechanics, 2nd Ed. Acad. Press, San Diego etc., xxiv + 730 pp.
Lismonde, B., 2002a: Climatologie du monde souterrain. Tome 1 Vents des ténèbres. Édition du Comité Départemental de Spéléologie de Isère. Grenoble, 168 pp.
Lismonde, B., 2002b: Climatologie du monde souterrain. Tome 2 Aérologie des Systèmes Karstiques. Édition du Comité Départemental de Spéléologie de Isère. Grenoble, 362 pp.
Milanolo, S. and F. Gabrovšek, 2009:. Analysis of carbon dioxide variations in the atmosphere of Srednja Bijambarska Cave, Bosnia and Herzegovina. Boundary layer meteorol. 131, 479-493.
Murakami, S, S. Kato and J. Zeng, 2000: Combined Simulation of Airflow, Radiation and Moisture Transport for Heat Release from a Human Body. Build. Environ., 35/6, 489-500.
NOAA Trends, retrieved Febr 8 2019 from https://www.esrl.noaa.gov/gmd/ccgg/trends/monthly.html
NOAA CO2, retrieved Febr 8 2019 from https://www.esrl.noaa.gov/gmd/ccgg/about/co2_measurements.html,
Obukhov, A.M., 1971: Turbulence in an atmosphere with a non-uniform temperature. Boundary-Layer Meteorology 2, 7-29.
Pasquill, F., 1962: Atmospheric diffusion : the dispersion of wind borne material from industrial and othe sources. London [etc.] : Van Nostrand, XII + 297 pp.
Prairie, Y.T and C. M. Duarte, 2007: Direct and indirect metabolic CO2 release by humanity. Biogeosciences 4, 215–217 retrieved Febr 8 2019 from https://www.biogeosciences.net/4/215/2007/bg-4-215-2007.pdf
Prelovšek, M., 2012: The dynamics of the present-day speleogenetic processes in stream caves of Slovenia, ZRC Publishing (Carsologica), 152 pp.
Prelovšek, M., S. Šebela and J. Turk, 2018:. Carbon dioxide in Postojna Cave (Slovenia), spatial distribution, seasonal dynamics and evaluation of plausible sources and sinks. Environmental earth sciences 77, 15 pp.
Sallstedt, Th., M. Ivarsson, J. Lundberg, R. Sjöberg, and J.R Vidal Romaní, 2014: Speleothem and biofilm formation in a granite/dolerite cave, Northern Sweden, International Journal of Speleology 43, 305-313.
Semanticscholar, Reynolds analogy. accessed on Febr. 7, 2019 on: https://pdfs.semanticscholar.org/presentation/a1f9/b6b742f8e4f9f3399e4063b628e66b96e907.pdf
Spiegelman, M.: Miths and Methods in Modelling, Chapter 1: Conservation Equations. www.ldeo.columbia.edu/~mspieg/mmm/Conserveq.pdf
Strnad J., 1992: Led in voda. Presek 19 (DMFA, ISSN 0351-6652), 204-208.
Šebela, S. and J. Turk, 2011: Local characteristics of Postojna Cave climate, air temperature, and pressure monitoring. Theoretical and applied climatology 105, 371-386.
Tennekes, H. and J.L. Lumley, 1972 : A first course in turbulence. Cambridge, Mass. ; London The MIT Press, XII+300 pp.
Witelski, T. and M Bowen, 2015: Methods of Mathematical medelling – Continuous systems and Differential equations, Springer, xviii+305 pp, retrieved Febr. 8, 2019 from https://www.springer.com/gp/book/9783319230412
Published
2020-10-06
How to Cite
1.
Rakovec J. Impact of visits on microclimate of caves – An analytical approach. AC [Internet]. 2020Oct.6 [cited 2020Oct.26];49(1). Available from: https://ojs.zrc-sazu.si/carsologica/article/view/8721
Section
Original papers