HALOPHILE VEGETATION OF THE SLOVENIAN SEACOAST: THERO-SALICORNIETEA AND SPARTINETEA MARITIMAE

Mitja KALIGARIČ*,** & Sonja ŠKORNIK*

Abstract
Halophile vegetation of the Slovenian sedimentary seacoast have been sampled with the standard Braun-Blanquet procedure. All the 140 collected relevés have been classified using the SYN-TAX 2000 software. The resulting dendrogram separated 5 well-defined clusters, characterized by different dominant species. Two well separated clusters have been further elaborated in this study. The floristically-poor association *Suaedo maritimae-Salicornietum patulae* Brullo et Funari ex Géhu et Géhu Franck 1984 tend to form monodominant stands with *Salicornia europaea* s.l. on mudflat hypersaline stands. The association *Suaedo maritimae-Bassietum hirsutae* Br.-Bl. 1928, with high abundance of *Suaeda maritima* occupy smaller surfaces on drier stands. Both were classified within halophile annual swards of the class *Thero-Salicornietea*. *Spartina maritima*-dominated perennial halophyte saltmarshes are represented with association *Limonio-Spartinetum maritimae* (Pignatti 1966) Beeft. et Géhu 1973 (class *Spartinetea maritimae*), which colonizes muddy islets, perturbed by high tide and sea turbulence and supports brackish water, which should be rich in nutrients.

Key words: phytosociology, halophile vegetation, classification, North Adriatic, *Thero-Salicornietea, Spartinetea maritimae*.

1. INTRODUCTION
Slovenia has only 46 km of seacoast, which is under the pressure of urbanization, tourism and industry (port of Koper). Its peculiarity is the geological substrate. With some exceptions, it consists of calcareous sandstone – Eocene flysch substrate. This substrate is almost perfectly matching with the territory of Slovenia, only a part, in the Muggia/Milje peninsula and bay are lying predominantly in Italy. Flysch substrate results in a dense hydrological system above ground due to its impenetrable properties. Three streams/rivers have their mouths in the Gulf of Trieste. Alluvial deposits on the mouths

* Department of Biology, University of Maribor, SI-2000 Maribor, Koroška 160, Slovenia, mitja.kaligaric@uni-mb.si, sonja.skornik@uni-mb.si
** ZRS Koper, Institute for biodiversity studies, Garibaldijeva 1, SI–6000 Koper, Slovenia
resulted in salt-marshes, where probably different vegetation types occurred before human influence. After the Roman period and later, these alluvial coastal regions had been either converted to salt pans or drained (Darovec 1992). Nowadays, the situation is only a transitional stage in abandonment and creation of new habitats on the seacoast. Abiotic conditions – shallow coast and large tide area – are in favor of assemblage of the various types of halophyte vegetation, probably similar to the natural types, developed before the human interference. The halophyte vegetation is interesting and important from the conservational perspective, for being threatened by all factors mentioned above. Almost all coastal habitats with different types of halophyte vegetation are listed in Annexes of the EU Directive Habitat 92/43 (1992) (“Conservation of natural habitats and of wild fauna and flora”).

Syntaxonomical classifications of the Slovenian halophyte vegetation are based on the relevés taken by M. Kaligarič in the years 1984–87 and years 1998 in 1999, not published so far. Some of those relevés have been taken into consideration also within the last revision of the North Adriatic halophyte vegetation (Poldini et al. 1999). This revision considers already the global revision of Mediterranean halophyte vegetation by Géhu et al. (1984), Rivas-Martínez (1990), Géhu et Biondi (1995, 1996), Mucina (1997) and Géhu (1999). Recent studies of halophyte vegetation, but in the Tyrrhenian district (Latium) have been done by Iberite et Frondoni (1997) and Frondoni et Iberite (2002). Both consider already the revised syntaxonomy.

The history of phytosociological assessment in the North Adriatic was started much earlier by Béguinot (1941). The most profound research was undertaken by Pignatti (1966) and followed by Fornciari (1968). Poldini’s syntaxonomical scheme (e.g. macroassociation “Limonietum venetum”) was adopted also for Slovenian halophyte vegetation in some short contributions about conservational issues of Sečoveljske soline (Kaligarič et Tratnik 1981, Kaligarič et Wraber 1988), Strunjan (Šajna et Kaligarič 2005) and Škocjanski zatok (Kaligarič 1997, 1998). The description of Pignatti’s syntaxonomical units is given also within the threat status of halophyte flora and vegetation of the Slovenian seacoast (Kaligarič 1996).

No analytical or synthetical phytosociological tables from Slovenian halophyte vegetation have been published so far, especially considering the last revision of Poldini et al. (1999). The main aims of the present study are: 1. Elaboration of collected relevés from the Slovenian seacoast with classification methods. 2. Determination of major groups of vegetation (classes and orders) on the basis of classification methods and characteristic species. 3. Elaboration of the two most distinguishable classes: pioneer annual swards of the class Thero-Salicornietea Pignatti ex Tx. in Tx. et Oberdorfer 1958 corr. Tx. 1974 and brackish perennial stands with Spartina maritima of the class Spartinetea maritimae (R. Tx. 1961) Beeft., Géhu, Ohba et R. Tx. 1971.

2. METHODS

2.1 Study area

The Slovenian flysch seacoast is predominantly – where still in natural form – composed of cliffs. Bellow the cliffs halophyte vegetation is scarce. The sedimentary coast was converted to salt pans or dried, and in some parts the sedimentary coast is artificially enlarged (soil deposits, salt pans etc.). On the other hand, some salt pans were abandoned and halophyte vegetation spread out. Locations of larger surfaces of halophyte vegetation (Figure 1), where the relevés have been sampled, are the following: Sečoveljske soline (mouth of Dragonja, Fontanigge, Lera, San Giorgio channel), Strunjanske soline (Stjuža lagoon coast, salt pans), Škocjanski zatok, mud deposits and coastal grasslands near Sv. Katarina/Ankaran.

Figure 1: Map of Slovenian Seacoast with locations of the collected relevés of halophile vegetation.

Slika 1: Karta slovenske morske obale z lokalitetami popisov halofitne vegetacije.
2.2 Sampling methods

During the years 1984–87 and 1998–1999 phytosociological relevés were taken. They were compiled using the standard procedure of the Braun-Blanquet approach (Braun-Blanquet 1964; Westhoff et van der Maarel 1973; Dierschke 1994), with combined cover/abundance scale. The phytosociological relevés were classified using the SYN-TAX 2000 software (Podani 2001). A hierarchical classification algorithm (Complete linkage, Euclidian distance) based on quantitative data was employed. The resulting dendrogram separated 5 well-defined clusters, characterized by different dominant species. Further subdivision was carried out with the help of character species.

2.3 Nomenclature

Taxonomic nomenclature follows Martinčič et al. (1999) except for species Halimione portulacoides, syntaxonomic nomenclature follows Poldini et al. (1999).

3. RESULTS AND DISCUSSION

3.1 Classification of the relevés

The 140 relevés were classified in 5 main clusters according to species composition and abundance, considering all the species of equal importance (Figure 2). The most diverse is the first main cluster (No.1). It could be further divided in 5 sub-clusters (1A-1E): The first one (A, relevés 1–4) is represented by floristically poor Salsola soda dominated stands on dry trampled muddy soils with stones. Species Elytrigia atherica and Atriplex prostrata indicate relatively dry conditions and lower salinity. Such stands could be classified within the Cakiletea maritima. This group of 6 relevés from the mouth of the Dragonja and coast of San Giorgio channel in Sečovlje represent the only relevés with Spartina maritima-dominated stands in Slovenia. Such stands, occurring on brackish waters with high nutrient flux (mouths!), are clearly identified with Spartinetea maritimae class. The remaining three sub-clusters (1B, 1D and 1E) are Juncus maritimus-dominated saltmarsh stands, relatively rich with various halophyte species, among them are also halophytes such as Phragmites communis and character species Carex extensa and Plantago cornu, not present in other halophilous vegetation types. These relevés (relevés 5–14 and 21–44) are classified within the Juncetea maritimi Br.-Bl. 1952 em. Beeftink 1965 class.

The second main cluster (No. 2, relevés 45–67) is characterized by sparsely vegetated Salicornia europaea-dominated stands on mudflats of salt pans, artificially made mud deposits or shallow sedimentary coasts. This vegetation is characterized by annuals Salicornia europaea and Suaeda maritima (the latter being less abundant) and perennial grass Puccinellia palustris. It covers large surfaces, but frequently consisting of only a few species (sometimes monocultures of glassworts). It was classified within the class Thero-Salicornietea annual halophyte vegetation.

Relevés from the third main cluster (No. 3, relevés 68–86) have similar characteristics to the previous group. They have the same dominant species but the stands are denser, with monodominant Suaeda maritima and less abundant Salicornia europaea. Other present species are characteristic for drier and/or trampled stands: e.g. Elytrigia atherica, Salsola soda, Parapholis incursa, Inula crithmoides and Atriplex prostrata. These stands contain many more species than the previous, Salicornia-dominated stands. Also this cluster is classified within the Thero-Salicornietea class.

The fourth main cluster (No. 4, relevés 87–137) has many sub-clusters at a lower level of dissimilarity. But the main trait is scarce presence of pioneer annual halophytes (Salicornia and Suaeda) and strong presence and dominance of halophilous shrubs: Arthrocnemum macrostachyum, Halimione portulacoides, Limonium angustifolium, Artemisia caerulescens, also Puccinellia palustris, Inula crithmoides and Aster tripolium. This low shrubby vegetation of relatively dry muddy soil is spread predominantly on abandoned salt pans or higher levels (away from the tide area) of the sedimentary coast. It is classified within the class Arthrocnemetea fruticosi Br.-Bl. et R. Tx. 1945 corr. O. Bolós 1967.

The fifth main cluster consists of only 3 relevés (No. 5, relevés 138–140) and represents a very specific situation. These are stands of Juncus maritimus-dominated salt grasslands near Sv. Katarina (Ankaran), classified within the Juncetea maritimi class. These grasslands are particularly species-rich (the
Figure 2: Dendrogram – the result of the hierarchical classification analysis for 104 relevés of halophile vegetation of the Slovenian seacoast.

Slika 2: Dendrogram – rezultat hierarhične klasifikacije 104 popisov halofitne vegetacije ob slovenski obali.
most species rich among collected relevés) with halophytes and halotolerant species. Only here occur species like Linum maritimum, Centaurea spicatum, Holoschoenus vulgaris and Sonchus maritimus. The separate clustering of this group of relevés is therefore satisfactorily explained.

Within this study only the second and the third main clusters, with relevés representing the class Thero-Salicornietea, and third sub-cluster (1C) of the first main cluster with relevés classified within the class Spartinettea maritima, will be further elaborated and discussed.

3.2 Vegetation of annual pioneer halophyte swards

Syntaxonomical classification of halophilous vegetation in the Mediterranean was very variable – from one class (Salicornietea Br.-Bl. 1939) up to seven classes (Poldini et al. 1999). On the basis of different studies across the Mediterranean, European coastal halophyte vegetation is classified in three classes: the annual pioneer vegetation of different glassworts on sandy to muddy soils, poor in nutrients, is classified as Thero-Salicornietea. Within the Northern Adriatic only order Thero-Salicornietales Pignatti ex Tx. in Tx. et Oberdorfer 1958 corr. Tx 1974 and alliance Salicornion patulae Géhu et Géhu Franck 1984 are present and represented with four associations (Poldini et al. 1999). Association Salicornietum venetae Pignatti 1966 is endemic due to endemic species Salicornia veneta and ecologically characteristic for “barene” – shallow muddy islets in the lagoon, a completely natural habitat. Another association, Pholiso-Spergularietum marginatae Pignatti (1953) 1966, is characterised by Parapholis incurva and Spergularia marginata, both species being rare in Slovenia and occurring only in small patches, mainly in anthropogenically-driven micro-habitats (e.g. halophilous ruderal stands or margins of salt pans). The fragments of this association were found in Ankaran – Sv. Kata rina and at the banks of San Giorgio channel in Seča, but not sampled. The other two associations, Suaedo maritimae-Salicornietum patulae Brullo et Funari ex Géhu et Géhu Franck 1984 and Suaedo maritimae-Bassietum hirsutae Br.-Bl. 1928 are Salicornia europaea-dominated and Suaeda maritima-dominated stands, as separately clustered in the dendrogram on Figure 2.

3.2.1 Association Suaedo maritimae-Salicornietum patulae Brullo et Funari ex Géhu et Géhu Franck 1984 (Table 1)

This, most widespread annual glasswort association in the Mediterranean (Frondoni et Iberite 2002), is characterized by species Salicornia patula. Since in Slovenia the taxonomy of genus Salicornia is still not cleared, we use the taxon Salicornia europaea in the broadest sense after »Mala flora Slovenije« (Martinčič et al. 1999). But there is a high probability that the most widespread annual glasswort which forms monodominant stands is taxon Salicornia patula. In table 1 the relevés 61 and 62 (present in dendrogram!) were not included, due to the high presence of Puccinellia palustris and weak presence of Salicornia europaea that combination leads us out of the framework of a “salicornietum”.

On the Slovenian seacoast this association occurs predominantly in salt pans, closed muddy surfaces with extreme salinity. Due to homogenous conditions, the surface could reach a quite a large extent. It could support periodically very dry conditions (summer) and it is flooded during high tide or rain periods (autumn, spring). These extreme conditions lead to almost monodominant stands. In moister and less salt conditions the grass Puccinellia palustris reaches higher cover values. The occurrence of Suaeda maritima alternates with Puccinellia palustris. It is a quite frequent species, but plants remain tall and poorly branched. Suaeda maritima doesn’t reach high cover values as well.

3.2.2 Association Suaedo maritimae-Bassietum hirsutae Br.-Bl. 1928 (Table 2)

This association was described from southern France (Braun-Blanquet 1951). Some authors classify it within the Thero-Salicornietea (Ferrari et al. 1985, Poldini et al. 1999), some of them within the Cakiletea (Géhu et Biondi 1994, Biondi 1998). Our classification (Figure 2) clustered these relevés close to stands of the Suaedo maritimae-Salicornietum patulae association, within the same main cluster.

Characteristic of this association is high abundance and cover value of species Suaeda maritima. The form without Bassia is the most widespread and could be interpreted also as facies with Suaeda maritima. The plant architecture of this species is different than in the previous one; plants are taller fully branched and generally well developed. The
stands are not so extreme in environmental parameters, *Salicornia* occurs, but less abundantly. The number of species, belonging to different classes, including *Cakiletea*, is higher. Nevertheless this association is incompletely developed within the Northern Adriatic, due to the absence of two characteristic species: *Cressa cretica* is completely missing, *Bassia hirsuta* has become rare north of Ravenna (Poldini et al. 1999) and it is completely missing on the Slovenian seacoast.

3.3 *Spartina maritima*-dominated perennial halophyte saltmarshes

The first relevés of *Spartina maritima*-dominated stands from the Mediterranean were taken by Pignatti (1952). Outside the Atlantic, this species is limited only to sedimentary coasts with low salinity of the Northern Adriatic from the Lagoon of Venice to Istria. Pignatti (1966) classified those stands within the order of halophilous scrubs (order *Limonio-Salicornietea*), but all recent classifications distinguish a separate class *Spartinetea maritimae* (R. Tx. 1961) Beeft., Géhu, Ohba et R. Tx. 1971, which includes North American and European *Spartina*-dominated saltmarshes. The presence of *Spartina maritima* in the Northern Adriatic is a biogeographic peculiarity. The only stands in the Adriatic and Mediterranean are very alike to Atlantic coasts: low winter temperatures of sea water, foggy winter periods with close-to-zero temperatures, shallow sedimentary coast and relatively high tide amplitude (Mosetti et Bajc 1972). But there exists a possibility that it was accidentally brought from the Atlantic with ships of »La serenissima«’s very active business with Atlantic Europe (after Géhu et al. 1984, Poldini et al. 1999). The floristically poor, but very distinctive stands of *Spartina maritima* are classified within one association – *Limonio-Spartinetum maritimae* (Pignatti 1966) Beeft. et Géhu 1973.

3.3.1 Association *Limonio-Spartinetum maritimae* (Pignatti 1966) Beeft. et Géhu 1973 (Table 3)

Spartina maritima is the absolutely dominant perennial in this association. *Limonium angustifolium* and *Puccinellia palustris* are also frequent, other species occur only sporadically. The stands are completely natural within the areas of North Adriatic lagoons (Venice, Grado). This association colonizes first the stable muddy islets, perturbed by high tide, sea turbulence etc. It supports brackish water, which should be rich in nutrients. Therefore it is characteristic also for estuaries. On Slovenian seacoast it occurs along the San Giorgio channel in Seča and the mouth of the Dragonja river, where the environmental conditions are close-to natural with the above-mentioned characteristics. It occurs also in the shallow muddy coast of Debeli rtič near the border with Italy. Due to strong lateral clonal spread of *Spartina stricta*, possible fragmentation of ramets and dispersal by sea currents, it should be very interesting to find out how patches and/or populations are matching with genotypes.

4. CONCLUSIONS

The three associations are represented in the synoptic table (Table 4). We could conclude that associations are defined mostly through dominant species (*Salicornia europaea*, *Suaeda maritima* and *Spartina maritima*) and the absence (rather presence!) of certain taxa. Characteristic species for the four classes of halophile vegetation are distributed across all the three associations. It is very difficult to draw conclusions only on the basis of species presence and cover. The “understanding” of vegetation assemblage is beyond the species combinations and numerical classifications: it should be accompanied with ecological data (salinity, water potential, soil properties, nutrients etc) and functional plant traits. Already Poldini et al. (1999) incorporated into understanding also structural data (life form and growth form of plants). For deeper understanding beyond classification and description, a functional approach is needed – a challenge for further research.

5. ACKNOWLEDGMENTS

The research for this paper was funded by the program group “Biodiversity” (P1-0078), the research project “Biodiversity gradient in relation to biogeographic, altitudinal and ecological factors” (J1-6577) and research project “Mapping of Sečoveljske soline and cultivation of autochthonous glassworts” (L1-7001-006), the first two headed by B. Kryštufek, the last one by J. Nečimer and M. Regvar, all receiving grants from the Slovenian Research Agency.
6. POVZETEK

Halofitna vegetacija ob slovenski morski obali: Thero-salicornietea in Spartinetea Maritimae

Suaedo maritimae-Salicornietum patulae Brullo et Funnari ex Géhu et Géhu-Franc 1984 (tabela 1)

Suaedo maritimae-Bassietum hirsutae Br.-Bl. 1928 (tabela 2)

To je floristično osiromašena združba, kjer dominira obrežna lobodka, osočnika pa je manj. Vrstna sestava je bogatejša kot v prejšnji asociaciji, lobodka pa doseže optimo velikost in razvejanost.

7. REFERENCES

Frondoni, R. & Iberite, M. 2002. The halophile ve- getation of the sedimentary coast of Lazio (cen-
Géhu, J. M. 1999: Schéma synsystématique des principales classes de végétations littorales sédimen-
Géhu, J.M., Costa, M., Scoppola, A., Biondi, E., Marchiori, S., Peris, J. B., Franck, J., Canglia, G.
& Veri, L. 1984: Essai synsystématique et syn-
chorologique sur les végétations littorales itali-
ennes dans un but conservatoire. Doc. Phytosoc.
N.S. 8: 393–474.
Géhu, J. M. & Biondi, E. 1994: Végétation du littoral de la Corse: essai de synthèse phytoso-
Géhu, J.M. & Biondi, E. 1995: Essai de typologie phytosociologique des habitats et des végé-
tations halophiles des littoraux sedimentaries periméditerraneens halophiles des littoraux sedimentaries périméditerranéens et thermo-
atlantiques. Fitosociologia 30: 201–212.
Géhu, J.M. & Biondi, E. 1996: Synoptique des as-
sociations végétales du littoral adriatique ital-
Iberite, M. & Frondoni, R. 1997: Contributo alla
conoscenza della vegetazione del Parco Nazion-
ale del Circeo: le comunità a salicornie annuali.
Fitosociologia 34: 121–125.
Kaligarič, M. 1996 : Threat status of halophyte flora
and vegetation. In: Gregori, J. (ed.) Narava
Slovenije, stanje in perspektive, Društvo ekol-
ogov Slovenije. Zbornik prispevkov o naravni
dediščini Slovenije, Ljubljana: 113–121.
Kaligarič, M. 1997: Rastlinstvo Škocjanskega zatoka
– deset let kasneje. Falco (Koper) 11: 11–12.
Kaligarič, M. 1998: Botanični pogled na možne
ureditve naravnega rezervata Škocjanski zatok.
Kaligarič, M. & Tratnik, M. 1981: Ohranimo
Sečoveljske soline. Proteus 44: 122–126.
Kaligarič, M. & Wraber, T. 1988: Obmorski lan in
klasnata tavžentroža v Sloveniji nista izumrla.
Martinčič, A., Wraber, T., Jogan, N., Ravnik, V., Podo-
bnik, A., Turk, B. & Vreš, B. 1999: Mala Flora
Slovenije. Ključ za določanje praroprtic in se-
menk. Tretja, dopolnjena in spremenjena izda-
ja. Tehniška založba Slovenije, Ljubljana.
Mosetti, F. & Bajc, D. 1972: Una relazione empirica tra l’ampiezza dell’acqua alta a Venezia e la distri-
39–42.
Mucina, L. 1997: Conspectus of classes of European
Pignatti, S. 1952: Introduzione allo studio fitoso-
ciologico della Pianura Veneta orientale con
particolare riguardo alla vegetazione litoranea.
Pignatti, S. 1966: La vegetazione alofila della lagu-
grams for data analysis in ecology and systematics. Budapest.
Poldini, L., Vidalii, M. & Fabiani, M.L. 1999: La vege-
tazione del litorale sedimentario del Friuli-Vene-
zia Giulia (NE Italia) con riferimenti alla regione
alto-adiatricio. Studia Geobotanica,17: 3–68.
Rivas-Martinez, S. 1990: Sintaxonomia de la classe
Thero-Salicornietea en Europe occidental. Ecol.
Medit. 16: 359–364.
Šajna N. & Kaligarič, M. 2005: Vegetation of the
Stjuža coastal lagoon in Strunjan landscape
park (Slovenia): a draft history, mapping and
in print).
Westhoff, V. & van der Maarel, E. 1973: The Braun-
Blanquet approach. In: Whittaker, R.H. (ed.):
Ordination and classification of communities.
Table 1: Analytical table of the association *Suaedo maritimae-Salicornietum patulae* Brullo et Furnari ex Géhu et Géhu Franck 1984

| Relevé number | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 |
|---------------|

<table>
<thead>
<tr>
<th>Original relevé number</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Relevé surface (m2)</th>
<th>60</th>
<th>100</th>
<th>60</th>
<th>30</th>
<th>50</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>70</th>
<th>30</th>
<th>20</th>
<th>60</th>
<th>60</th>
<th>50</th>
<th>100</th>
<th>40</th>
<th>60</th>
<th>50</th>
<th>70</th>
<th>60</th>
<th>60</th>
<th>60</th>
</tr>
</thead>
</table>

| coverage (%) | 60 | 60 | 70 | 70 | 60 | 50 | 60 | 80 | 70 | 60 | 60 | 40 | 40 | 60 | 20 | 50 | 50 | 80 | 50 | 60 | 60 |
|--------------|

| Diagnostic species of the association | Cl, O, A *Salicornia europaea* | 3 | 4 | 3 | 2 | 3 | 3 | 3 | 5 | 4 | 4 | 3 | 3 | 4 | 3 | 4 | 3 | 1 | 0 | 0 | 100 |
|---------------------------------------|---------------------------------|

| Diagnostic species of higher syntaxonomic units | Cl, O, A *Suaeda maritima* | 4 | 3 | 3 | 4 | + | + | . | . | + | + | . | + | . | 1 | 2 | 1 | 1 | + | 3 | 76 |
|---|-----------------------------|

<table>
<thead>
<tr>
<th>Others</th>
<th>Limonium angustifolium</th>
<th>+</th>
<th>+</th>
<th>+</th>
<th>2</th>
<th>1</th>
<th>+</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th>+</th>
<th>+</th>
<th>.</th>
<th>+</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th>38</th>
</tr>
</thead>
</table>

| Puccinellia palustris | . . | . | + | . | 2 | 2 | 2 | + | . | . | . | . | + | . | . | . | . | . | . | . | . | . | . | 38 |

| Aster tripolium | + | 2 | + | . | . | . | . | . | . | 1 | . | 1 | + | + | . | . | . | . | . | . | . | . | . | 33 |

| Halimione portulacoides | + | . | + | + | + | . | . | . | . | . | . | . | . | + | . | . | . | . | . | . | . | . | 2 | 28 |

| Phragmites australis | + | + | . | . | . | . | . | . | . | . | . | . | . | + | . | . | . | . | . | . | . | . | . | 13 |

| Sarcocornia fruticosa | . | . | 1 | + | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | . | 14 |

| Elytrigia atherica | . | + | 5 |

| Puccinellia fasciculata | . | . | . | . | . | . | . | . | . | . | 1 | . | . | . | . | . | . | . | . | . | . | . | 5 |

| Salsola soda | . | . | . | . | . | . | . | . | . | . | 1 | . | . | . | . | . | . | . | . | . | . | . | 5 |

| Spergularia media | . | + | 5 |

Legend (legenda):

Cl – *Thero-Salicornietea* Pignatti ex Tx. in Tx. et Oberdorfer 1958 corr. Tx. 1974

O – *Thero-Salicornietalia* Pignatti ex Tx. in Tx. et Oberdorfer 1958 corr. Tx 1974

A – *Salicornion patulae* Géhu et Géhu Franck 1984
Table 2: Analytical table of the association *Suaedo maritimae-Bassietum hirsutae* Br.-Bl. 1928

<table>
<thead>
<tr>
<th>Relevé number</th>
<th>68</th>
<th>69</th>
<th>70</th>
<th>71</th>
<th>72</th>
<th>73</th>
<th>74</th>
<th>75</th>
<th>76</th>
<th>77</th>
<th>78</th>
<th>79</th>
<th>80</th>
<th>81</th>
<th>82</th>
<th>83</th>
<th>84</th>
<th>85</th>
<th>86</th>
<th>Fr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original relevé number</td>
<td>35</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>42</td>
<td>52</td>
<td>41</td>
<td>46</td>
<td>47</td>
<td>36</td>
<td>37</td>
<td>48</td>
<td>49</td>
<td>43</td>
<td>45</td>
<td>44</td>
<td>50</td>
<td>51</td>
<td>53</td>
<td>(%)</td>
</tr>
<tr>
<td>Relevé surface (m2)</td>
<td>30</td>
<td>40</td>
<td>60</td>
<td>30</td>
<td>30</td>
<td>20</td>
<td>50</td>
<td>40</td>
<td>60</td>
<td>40</td>
<td>70</td>
<td>20</td>
<td>40</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>60</td>
<td>70</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>coverage (%)</td>
<td>80</td>
<td>70</td>
<td>70</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>70</td>
<td>80</td>
<td>60</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>50</td>
<td>50</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

Diagnostic species of the association

Cl, O, A *Suaeda maritima* 4 3 3 5 5 5 5 3 5 4 3 4 4 4 3 3 3 4 3 100

Diagnostic species of higher syntaxonomic units

Cl, O, A *Salicornia europaea* + 1 1 + + + + + + + + + + + 37

Others (ostale)

Aster tripolium + + + + + + + + + + + + + 3 2 + 1 58

Atriplex prostrata subsp. prostrata + + 1 + + + + + + + + + + 1 1 2 + + 42

Elytrigia atherica + + + + + + + + 1 + 2 + 32

Limonium angustifolium + + + + + + + + + + + + + + 26

Halimione portulacoides . . + + + + + + + 26

Salsola soda . . + + + + + + + + 26

Inula crithmoides . . . + 1 . + + + + + + + + 21

Puccinellia palustris 1 + . + + . + + + + + + + + 21

Spergularia media . + + + + + + + + + + + 21

Artemisia caerelescens + + + + + + + + + 16

Sarcocornia fruticosa + 1 1 16

Phragmites australis . + + + + + + + + + 16

Parapholis incurva + + + + + + + + 11

Dactylis glomerata + + + + + + + + 5

Legend (legenda):

Cl – *Thero-Salicornietea* Pignatti ex Tx. in Tx. et Oberdorfer 1958 corr. Tx. 1974

O – *Thero-Salicornietalia* Pignatti ex Tx. in Tx. et Oberdorfer 1958 corr. Tx 1974

A – *Salicornion paludis* Gehu et Gehu Franck 1984
Table 3: Analytical table of the association *Limonio-Spartinetum maritimae* (Pignatti 1966) Beeft. et Géhu 1973

Tabela 3: Analitična tabela asociacije *Limonio-Spartinetum maritimae* (Pignatti 1966) Beeft. et Géhu 1973

<table>
<thead>
<tr>
<th>Relevé number</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>Fr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original relevé number</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>6</td>
<td>8</td>
<td>(%)</td>
</tr>
<tr>
<td>Relevé surface (m²)</td>
<td>20</td>
<td>30</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Coverage (%)</td>
<td>80</td>
<td>90</td>
<td>80</td>
<td>80</td>
<td>70</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Diagnostic species of the association

- **Cl. O. A Spartina maritima**
 - Limonium angustifolium
 - Others (ostale)
 - Puccinellia palustris
 - Aster tripolium
 - Suaeda maritima
 - Sarcocornia fruticosa
 - Phragmites australis

Others (ostale)

- Puccinellia palustris
 - 1 + 2 + + + 83
- Aster tripolium
 - 1 + 1 . 33
- Suaeda maritima
 - + 1 . 33
- Sarcocornia fruticosa
 - 16
- Phragmites australis
 - . . 1 . 16

Legend (legenda):

Table 4: Synoptic table of the associations of the classes *Thero-Salicornietea* and *Spartinetea maritimae*. Values in the table correspond to the relative frequencies (in percentage) of the species in presented group of relevés.

<table>
<thead>
<tr>
<th>Association</th>
<th>Number of relevés</th>
<th>Sm-Sp</th>
<th>Sm-Bh</th>
<th>Li-Sp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ass. char. and diff. species</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ch1(CI1, O1, A1)</td>
<td></td>
<td>Salicornia europaea</td>
<td>100 (3-5)</td>
<td>37 (+1)</td>
</tr>
<tr>
<td>Ch2(CI1, O1, A1)</td>
<td></td>
<td>Suaeda maritima</td>
<td>70 (+-4)</td>
<td>100 (3-5)</td>
</tr>
<tr>
<td>Ch3(CI2, O2, A2)</td>
<td></td>
<td>Spartina maritima</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>D3(AF)</td>
<td></td>
<td>Limonium angustifolium</td>
<td>35 (+-2)</td>
<td>32 (+)</td>
</tr>
</tbody>
</table>

Arthrocnemetea fruticosi Br.-Bl. et R. Tx. 1943
corr O. Bolós 1967

Sarcocornia fruticosa	9 (+-1)	16 (+-1)	16 (+)
Halimione portulacoides	26 (+-2)	26 (+)	.
Inula crithmioides	.	21 (+-1)	.
Artemisia caerulescens	.	16 (+)	.

Juncetea maritimi Br.-Bl. 1952 em. Beeftink 1965

Puccinellia palustris	35 (+-2)	21 (+-1)	83 (+-2)
Aster tripolium	30 (+-2)	58 (+-3)	33 (+-1)
Elytrigia atherica	4 (+)	32 (+-2)	.

Cakiletea maritimae R. Tx. et Prsg. 1950

Spargularia marina	.	21 (+)	.
Salsola soda	4 (1)	26 (+)	.
Atriplex prostrata subsp. prostrata	.	42 (+-2)	.

Others (ostale)

Phragmites australis	13 (+)	16 (+-1)	16 (1)
Puccinellia fasciculata	4 (1)	.	.
Spargularia media	4 (+)	11 (+)	.
Parapholis incurva	.	.	.
Dactylis glomerata	.	5 (+)	.

Legend (legenda):

- **Sm-Sp**: *Suaedо maritimae-Salicornietum patulae*
- **Sm-Bh**: *Suaedо maritimae-Bassietum hirsutae*
- **Li-Sp**: *Limonio-Spartinetum maritimae*
- **Ch1-3**: Ass. char. species (značilnice asociacij)
- **D**: differential species (razlikovalnice asociacij)
- **Cl1**: *Thero-Salicornietea*
- **Cl2**: *Spartinetea maritimae*
- **O1**: *Thero-Salicornietalia*
- **O2**: *Spartinetalia maritimae*
- **A1**: *Salicornion patulae*
- **A2**: *Spartinion maritimae*