AGERATINA ADENOPHORA
(ASTERACEAE) NEW SPECIES TO THE ITALIAN ALIEN FLORA AND OBSERVATIONS ON ITS ENVIRONMENTAL THREATS

Emanuele DEL GUACCHIO¹

1. INTRODUCTION

Discovery of new aliens and evaluation of their naturalization status are crucial for their correct management. For Italy, a comprehensive work was recently published by Celesti-Grapow et al. (2010). In spite of this, the number of exotic species is in steady increase (e.g. Alberti 2012, Galasso 2012, Stinca et al. 2012, Villa et al. 2012) and in some cases they are recognized as invasive (e.g. Iamonico 2011; Iberite et al. 2011).

During the botanical investigations on the flora of Southern Italy, two separate populations referred the genus *Ageratina* Spach were found in Campania region. The genus is rarely recognized in Italian floras, being included in *Eupatorium* L. (e.g. Pignatti 1982). However, several *Ageratina* species are considered aliens out of their native area (Americas) (Nesom 2006) and some are invasive in several countries (e. g. Wang & Wang 2006).

With the aim to correctly identify the *Ageratina* populations found, a morphological study is carried out, also in comparison with related species *A. ligustrina* (DC.) R. M. King & H. Rob. and *Eupatorium cannabinum* L. Moreover, taxonomical, ecological notes and naturalization status are provided.

2. MATERIALS AND METHODS

The collected specimens are kept in NAP (abbreviations according to Thiers 2011) and in the personal Herbarium of the author (*Herb. Del Guacchio*). For comparison purpose, exsiccate from Mexico, Algeria, Madeira and Canarias were also examined (FI and NAP, sub *E. adenophorum* and *E. glandulosum*) plus images available on the web (SEINet 2012, PlantNET 2012). The following characters were analyzed: **habitus** (herbaceous or suffruti
cose), shape of the leaf blades, leaf margins, presence of capitate-trichomes and stipitate glands on peduncles, shape of the cypselae, shape of the anthers, presence of glands on the corolla lobes, shape of the fruits.

¹ Bagnolifutura SpA, via Diocleziano 341-343, 80124-Naples, e-mail: emanuele.delguacchio@email.it
The specimens were identified by the keys in Nesom (2006). The original descriptions by Sprengel (1826) and Kunth (Bonpland et al. 1818) were also examined. The plants from Campania (photos!) were also examined by J. Pruski (Missouri Botanical Garden) in order to confirm the identification.

Literature was extensively examined to detect previous indications of the species in Italy and in Campania (e.g. Caputo et al. 1994, Celesti-Grapow et al. 2010, Conti et al. 2005, Greuter 2006–2009, Lacaita 1921, Pignatti 1982). The populations were observed in the field respectively for 7 years (Sorrento) and 5 years (Salerno). In order to evaluate adaptability and drought resistance, vegetative fragments from both populations were collected and cultivated at 100 m s.l.m. (locality Quercioni of Altavilla Silentina, Salerno province, Campania region), on clayey substrate.

The evaluation of the naturalization status follows Pyšek et al. (2004).

3. RESULTS AND DISCUSSION

Genus *Ageratina* was first described by Spach (1841) and distinguished from related taxa included in tribe *Eupatorieae* Cass. (e.g. *Stevia*, *Ageratum*, *Coelostina*, *Eupatorium*, *Ayapana*, *Mikania*, *Liatris*, *Suprago*), but on the basis of rather obscure diagnostic features (King & Robinson 1970). These latter authors highlighted important diagnostic features of florets and fruits, circumscribing genus *Ageratina* in a modern way. Their treatment (including cytological data) was later accepted in the comprehensive work for the tribe (King & Robinson 1987) and it has been supported by molecular data (Robinson et al. 2009). As a consequence, *Ageratina* is definitively worth of distinct generic rank, and now it is included in the subtribe *Oxylobinae* R. M. King & H. Rob. (King & Robinson, 1978).

A. adenophora is based on *Eupatorium adenophorum* Spreng. (Sprengel 1826), who cited it as synonym of *E. glandulosum* Kunth (Bonpland et al. 1818). This latter name is illegitimate under art. 53.3 of the ICNB (McNeill et al. 2012) being a later homonym of *E. glandulosum* Michx. (Michaux 1803).

The genus includes about 265 species from tropics and subtropics of the Americas (Chen et al. 2011). In Europe, 3 species are recognized (Greuter 2006–2009), although in Flora Europaea (Tutin 1976) *Ageratina* is included in *Eupatorium*, and only one species attributable to the genus is recorded (*E. adenophorum*). In Italy, *A. adenophora* is not reported by Pignatti (1982) who indicates it (sub *E. adenophorum*) only in Corsica (included in the coverage by Pignatti, although French territory). Recently, Celesti-Grapow et al. (2010) report *A. ligustrina* (DC.) R. M. King & H. Rob. (≡ *Eupatorium ligustrinum* DC.) as a casual alien for Liguria (northern Italy).

A. adenophora, native of Mexico, is widely naturalized in the world: Northern America, Europe, Africa and Macaronesia (Canary Island, Madeira, Azores archipelago), temperate and tropical Asia, Australia, New Zealand and Pacific Islands (USDA 2012). In Europe it is reported as naturalized in Portugal, Spain, Corse and Kriti and as a casual alien in France and Germany. Its status is not clear for Croatia and continental Greece. Finally it is also recorded for Algeria and Lebanon (Greuter 2006–2009).

The plants observed perfectly match with the original description and the exsiccata analyzed.
J. Pruski also confirms the identification. According to all the examined literature, the species is new to the flora of Italy.

In both the discovered localities (see Table 1), A. adenophora appears as a well established xero-phyte. It has been observed for several years and, also on account of its developed habitus (shrub), it cannot be considered an ephemeral plant. (Pysek et al. 2004).

A. adenophora is rarely cultivated as ornamental in Campania, for example at Botanical Garden of Naples (Tenore 1845, sub Eupatorium adenophorum) and probably the naturalized plants originate from cultivated stocks. However, no evidence of cultivation was found by field observations in the surroundings of the observed localities.

Cultivation tests showed a rapid growth of the plants both using vegetative parts (especially by rootstock fragments), and seeds (by pappus-furnished cypsela) both in pots and in soil. Several seeds are proved to be of asexual origin and partially non-viable (Parsons 1992). It is not possible, therefore, to establish the origin (sexual or vegetative) of the two populations. The population on rocks in Sorrento might have originated by wind dispersion of seed, that of Salerno might have originated via water seed dispersal or vegetative fragments.

In cultivation, the plants can endure short periods of cold (at least immediately above freezing temperature by night), but colonization of mountain localities is hard to envisage.

The clones cultivated near Salerno show considerable drought resistance, up to three weeks. Even if the aerial parts mainly dried, when watered the plants readily produced young shoots from the base of the stem or the rootstocks.

However, after one week in drought condition, the plants clearly suffer, while longer periods of drought is fatal. This proves that in local climate Ageratina is strictly linked to wet environments and cannot colonize dry open habitat. Even if it cannot be reported as invasive species in Italy at the present state of knowledge, it is potentially threatening as it may colonize natural and semi-natural habitats. Experiments by Hong-bang et al. (2007) showed the great ecological plasticity of this species and its biological strategy (also involving allelopathy) in invading new ecosystems. A. adenophora already revealed as a noxious invasive in Chinese forests (Hong-bang et al. 2007), Australia (Parsons 1992), South Africa (Kluge 1991, Heystek et al. 2011), Hawaii Islands (Barreto & Evans 1988, PIER 2011) and California (Fuller 1981): it is named “banmara” (i.e., “killer of the forests”) in Nepal (Sharma & Chhetri 1977). Its worst threat potential is the competition with the native species, the alteration of soil chemistry, the soil depletion, and the toxicity for cattle (Parsons 1992, Chen et al. 2011).

In particular, in Campania it may compete against native species both in stillicidious rocky coasts and along rivers in warm climate. In Sorrento several endemic entities were observed to grow together with Ageratina. Several other invasive species colonize the preferred habitat of A. adenophora [e.g. Ipomoea indica (Burm.) Merr., Carpobrotus acinaciforme (L.) N. E. Br.], replacing autochthonous species (pers. obs.). These species are able to compete against endemic plants which usually disappear in sites where the ecological conditions are less prohibitive for alien competitors. In the studied localities, already

Table 1: Data of observed site and populations of A. adenophora (note that probably they are clones started by two founders).

<table>
<thead>
<tr>
<th></th>
<th>Sorrento</th>
<th>Salerno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locality</td>
<td>Between Marina Piccola and the public garden, next to the stairway</td>
<td>Parco Pinocchio, along the right ripe of Irno river</td>
</tr>
<tr>
<td>UTM geographic coordinates</td>
<td>33T 497.449</td>
<td>33T 481.450</td>
</tr>
<tr>
<td>Altitude (m a.s.l.)</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Habitat</td>
<td>Wet rocky coast</td>
<td>River banks</td>
</tr>
<tr>
<td>Exposition</td>
<td>North-East</td>
<td>East</td>
</tr>
<tr>
<td>Pedology</td>
<td>Grey tuff rubble</td>
<td>Alluvial deposits (clay and sands)</td>
</tr>
<tr>
<td>Vegetation</td>
<td>Sparse vegetation with mixed rocky and synanthropic species</td>
<td>High-herbaceous riparian vegetation</td>
</tr>
<tr>
<td>Population area (m²)</td>
<td>About 2</td>
<td>About 20</td>
</tr>
<tr>
<td>Height of plants (m)</td>
<td>0.8–1.2</td>
<td>About 2.5</td>
</tr>
</tbody>
</table>
colonized by synanthropic and subcosmopolitan species, *Helichrysum litoreum* Guss. (endemic of the southern Tyrrhenian coasts), *Seseli polyphyllum* Ten. (limited to few locations in Latium and Campania, central-southern Italy), *Limonium cumanum* (Ten.) Kuntze (exclusive of the Sorrento peninsula, neighboring islands and Naples) and *Centaurea tenorei* Lacaita (restricted to the Sorrento peninsula) were observed. In particular, *A. adenophora* overpowers the heads of *H. litoreum* and *C. tenorei* growing in the same locations and depriving them of space and light.

The flora in the locality in Salerno is surely less valuable than that of Sorrento and there *A. adenophora* only competes with *Arundo donax* L., a well known invasive archeophyte from China. Several other noxious invasive aliens can be observed as well, such as *Bidens frondosus* L., *Helianthus tuberosus* L., *Paspalum distichum* L., together with native shrubs (e.g., *Salix alba* L.) and herbs [e.g, *Cynodon dactylon* (L.) Pers., *Persicaria maculosa* S. F. Gray, *Alisma plantago-aquatica* L.]. Nevertheless, the hazard even appears more serious. In fact, in this habitat this species can spread very quickly, colonizing new territories and seriously altering them (Wang & Wang 2006). It is important to note that about the 30% of the species not recently found of Campania and many of the more rare or endangered are limited to wet lowlands. In any case, wet lowlands, together with sandy coasts, represent the most threatened and altered ecosystems in the region (pers. obs.). Unfortunately, Italian legislation is still very defective in the control of the so-called “green pollution” (Brundu, 2008), even if impact of alien species on human health, economic activities and habitat conservation is serious, or disastrous in some cases (Andaloro et al. 2009, Celesti-Grapow et al. 2010). Several methods of management were suggested in the countries where *A. adenophora* became invasive (e.g., Parsons 1992, Zang et al. 1998, Hong-bang et al. 2007, Muniappan et al. 2009, PIER 2011) but, in our case, simple manual eradication would be recommended, together with a limitation of the cultivation of the plant.

To help identification in Italy, *A. adenophora* may be easily inserted in the keys provided by Pignatti (1982) for Italian flora, as this author keys out morphologically related (not-natural) groups. *Ageratina* (for the species of our interest) may be inserted in the so-called V group (“plants with opposite leaves”). This genus, being the only one belonging to *Eupatoriae*, is the most closely related to *Ageratina* in native European flora. However, considering the Italian species, the two genera can be readily distinguished. Genus *Eupatorium* is represented only by *E. cannabinum* L. s.l. a well known and common species widely distributed in all Italian regions with the typical subspecies, and in Basilicata and Sardinia with the subsp. *corsicum* (Loisel.) P. Fourn. (Conti et al. 2005) (this latter also reported in France and Corsica - Greuter 2009–2011). As far as *A. ligustrina* is concerned, its only original record for Italy is by Puccini (1950, sub *Eupatorium microanthum* Less.). S. Peccenini (pers. com.) communicated that the plant probably still occurs in old gardens of Liguria, but exsiccata are lacking and cultivation is now declining. Therefore, its expansion in Italy is limited. These three species are readily distinguished on account of several characters, listed in Table 2.

Table 2: Diagnostic comparison between the Eupatoria taxa reported for Italy.

<table>
<thead>
<tr>
<th></th>
<th>Eupatorium cannabinum</th>
<th>Ageratina adenophora</th>
<th>Ageratina ligustrina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitus</td>
<td>Perennial herb</td>
<td>Shrub (woody above)</td>
<td>Shrub (woody above)</td>
</tr>
<tr>
<td>Leaf shape</td>
<td>3–5 Palmatisect (rarely entire), with usually lanceolate segments</td>
<td>Entire, lanceolate to deltate</td>
<td>Entire, elliptic to ovate-lanceolate</td>
</tr>
<tr>
<td>Leaf margin</td>
<td>Coarsely serrate</td>
<td>Serrate</td>
<td>Sub-entire or slightly toothed</td>
</tr>
<tr>
<td>Leaf glands</td>
<td>Not present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Leaf upper surface</td>
<td>Dull</td>
<td>Bright</td>
<td>Bright</td>
</tr>
<tr>
<td>Leaf venation</td>
<td>Pinnated, with only the midrib prominent in each segment</td>
<td>Main veins basal, rather prominent beneath</td>
<td>Pinnate, with only the midrib prominent beneath</td>
</tr>
<tr>
<td>Base of the style</td>
<td>Pubescent</td>
<td>Glabrous</td>
<td>Glabrous</td>
</tr>
<tr>
<td>Flowers color</td>
<td>Usually pinkish</td>
<td>Usually white</td>
<td>White</td>
</tr>
<tr>
<td>Flowering season</td>
<td>Late spring-summer</td>
<td>Late spring-summer</td>
<td>Late autumn-winter</td>
</tr>
</tbody>
</table>

Habitat conservation is serious, or disastrous in some cases (Andaloro et al. 2009, Celesti-Grapow et al. 2010). Several methods of management were suggested in the countries where *A. adenophora* became invasive (e.g., Parsons 1992, Zang et al. 1998, Hong-bang et al. 2007, Muniappan et al. 2009, PIER 2011) but, in our case, simple manual eradication would be recommended, together with a limitation of the cultivation of the plant. To help identification in Italy, *A. adenophora* may be easily inserted in the keys provided by Pignatti (1982) for Italian flora, as this author keys out morphologically related (not-natural) groups. *Ageratina* (for the species of our interest) may be inserted in the so-called V group (“plants with opposite leaves”). This genus, being the only one belonging to *Eupatoriae*, is the most closely related to *Ageratina* in native European flora. However, considering the Italian species, the two genera can be readily distinguished. Genus *Eupatorium* is represented only by *E. cannabinum* L. s.l. a well known and common species widely distributed in all Italian regions with the typical subspecies, and in Basilicata and Sardinia with the subsp. *corsicum* (Loisel.) P. Fourn. (Conti et al. 2005) (this latter also reported in France and Corsica - Greuter 2009–2011). As far as *A. ligustrina* is concerned, its only original record for Italy is by Puccini (1950, sub *Eupatorium microanthum* Less.). S. Peccenini (pers. com.) communicated that the plant probably still occurs in old gardens of Liguria, but exsiccata are lacking and cultivation is now declining. Therefore, its expansion in Italy is limited. These three species are readily distinguished on account of several characters, listed in Table 2.

Table 2: Diagnostic comparison between the Eupatoria taxa reported for Italy.

<table>
<thead>
<tr>
<th></th>
<th>Eupatorium cannabinum</th>
<th>Ageratina adenophora</th>
<th>Ageratina ligustrina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitus</td>
<td>Perennial herb</td>
<td>Shrub (woody above)</td>
<td>Shrub (woody above)</td>
</tr>
<tr>
<td>Leaf shape</td>
<td>3–5 Palmatisect (rarely entire), with usually lanceolate segments</td>
<td>Entire, lanceolate to deltate</td>
<td>Entire, elliptic to ovate-lanceolate</td>
</tr>
<tr>
<td>Leaf margin</td>
<td>Coarsely serrate</td>
<td>Serrate</td>
<td>Sub-entire or slightly toothed</td>
</tr>
<tr>
<td>Leaf glands</td>
<td>Not present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Leaf upper surface</td>
<td>Dull</td>
<td>Bright</td>
<td>Bright</td>
</tr>
<tr>
<td>Leaf venation</td>
<td>Pinnated, with only the midrib prominent in each segment</td>
<td>Main veins basal, rather prominent beneath</td>
<td>Pinnate, with only the midrib prominent beneath</td>
</tr>
<tr>
<td>Base of the style</td>
<td>Pubescent</td>
<td>Glabrous</td>
<td>Glabrous</td>
</tr>
<tr>
<td>Flowers color</td>
<td>Usually pinkish</td>
<td>Usually white</td>
<td>White</td>
</tr>
<tr>
<td>Flowering season</td>
<td>Late spring-summer</td>
<td>Late spring-summer</td>
<td>Late autumn-winter</td>
</tr>
</tbody>
</table>
4. ACKNOWLEDGEMENTS

Thanks are due to Directors and Curators of NAP and FI. I am also grateful to Dr. J. Pruski (Missouri Botanical Garden) for help in identification and to Dr. D. Iamonico (Rome), Dr. L. Peruzzi (Pisa, Italy), Prof. S. Peccenini (Genoa, Italy), Dr. G. Brundu (Sassari, Italy) and prof. P. Caputo (Naples) for their helpful suggestions.

5. REFERENCES

Kluge, R.L. 1991: Biological control of Crofton

Received 9.1.2013
Revision received 15.4.2013
Accepted 18.4.2013