

# Phytosociological Patterns Along a Soil Nutrient Gradient in Sacred Groves of Haryana

Aman Mahla<sup>1</sup> , Himanshi Dhiman<sup>2</sup> , Harikesh Saharan<sup>3</sup>  & Anita Rani Sehrawat<sup>1</sup> 

**Key words:** Sacred Groves; semi-arid; Important Value Index (IVI); phytodiversity; soil nutrients; vegetation composition.

**Ključne besede:** Sveti gaji; pol aridno; Indeks pomembnosti vrste (IVI); fitodiverziteta; hranila v tleh; sestava vegetacije.

## Abstract

Sacred groves (SGs) are patches of natural vegetation traditionally protected by local communities for religious, cultural, or spiritual reasons. This study evaluated the phytodiversity and soil nutrient profile of four SGs in semi-arid Western Haryana, outside the protected area network. Quadrat sampling recorded floristic composition, species richness, dominance, evenness, and Shannon–Wiener diversity index ( $H'$ ). Soil parameters included pH, electrical conductivity (EC), bulk density (BD), nitrogen (N), phosphorus (P), potassium (K), and organic carbon (OC). Tree, shrub, and herb density was highest in Bidola SG, while basal area was greater in Sultanpur (19.77 m<sup>2</sup>/ha) and Dhingsara (15.51 m<sup>2</sup>/ha) than in Makrana Johra (7.69) and Bidola (4.49). Dominant species were *Acacia tortilis* (Bidola), *Salvadora oleoides* (Sultanpur), and invasive *Prosopis juliflora* (Dhingsara).  $H'$  ranged 0.61–3.26 for trees, 0.05–0.58 for shrubs, 0.39–0.88 for herbs, and 0.32–4.59 for climbers. Soils showed highest EC, N, P, K, and OC in Makrana Johra, maximum BD in Dhingsara, and highest pH in Bidola. Findings highlight that SGs of Western Haryana sustain notable biodiversity and soil fertility, but agricultural expansion threatens their integrity, requiring urgent conservation and community–scientist collaboration.

## Izvleček

Sveti gaji (SG) so zaplate naravne vegetacije, ki jih varuje lokalna skupnost za verske, kulturne in duhovne namene. V naši raziskavi smo ovrednotili fitodiverzitet in hranila v tleh v štirih SG v polsušnem delu Zahodnega Haryana izven omrežja zavarovanih območij. Z vzorčenjem kvadratov smo ugotovili floristično sestavo, vrstno pestrost, dominanco, enakomernost in Shannon–Wiener diverzitetni indeks ( $H'$ ). Preučevani talni parametri vključujejo pH, električno prevodnost (EC), gostoto tal (BD), dušik (N), fosfor (P), kalij (K) in organski ogljik (OC). Gostota dreves, grmov in zelišč je bila največja v SG Bidola, bazalna površina je bila največja v SG Sultanpur (19,77 m<sup>2</sup>/ha) in Dhingsara (15,51 m<sup>2</sup>/ha) kot v SG Makrana Johra (7,69) in Bidola (4,49). Dominantne vrste so bile *Acacia tortilis* (Bidola), *Salvadora oleoides* (Sultanpur) in invazivna *Prosopis juliflora* (Dhingsara).  $H'$  je bil med 0,61–3,26 za drevesa, 0,05–0,58 za grme, 0,39–0,88 za zelišča in 0,32–4,59 za plezalke. Največji EC, N, P, K in OC v tleh so bili v Makrana Johra, največji BD v Dhingsara in najvišji pH v Bidola. Rezultati so pokazali, da najdemo v SG v območju Zahodni Haryana visoko biodiverziteto in rodovitna tla, vendar je zaradi širjenja kmetijstva ogrožena njihova celovitost, zato je nujno potrebno varovanje in sodelovanje skupnosti in raziskovalcev.

Corresponding author:  
Anita Rani Sehrawat  
E-mail:  
anitasehrawat@mdurohtak.ac.in

Received: 1. 3. 2025  
Accepted: 20. 8. 2025



<sup>1</sup> Department of Botany, Maharshi Dayanand University, Rohtak, Haryana-124001

<sup>2</sup> Department of Botany, Vivek University, Bijnor, Uttar Pradesh-246701

<sup>3</sup> Department of Botany, Kurukshetra University, Kurukshetra, Haryana-136119

## Introduction

Sacred groves (SGs) are small forest patches protected by local communities for religious or cultural reasons, often dedicated to deities or spirits, where activities like tree cutting or hunting are traditionally forbidden. These are revered and protected across cultures and continents for centuries, embodying a unique blend of biodiversity conservation, cultural heritage, and spiritual significance. They have been acknowledged by the International Union for the Conservation of Nature as Indigenous and Community Conserved Areas (ICCAs) (IUCN 2009). Usually located around a centre of devotion, the SGs are run by local people e.g., indigenous organizations or local communities who are the guardians of the surrounding forest (Dudley et al., 2010). SGs' conferred biodiversity protection can thus help to supplement efforts at biodiversity conservation in formally identified protected areas more usually under government or NGO management (Klepeis et al., 2016).

SGs have been reported in diverse regions such as West Africa (Nigeria, Ghana), Southeast Asia (Thailand, Cambodia), and Japan (Shinto forests), in addition to their widespread presence across India. This highlights the global significance of sacred groves as both biodiversity hotspots and cultural landmarks. Sacred groves have often been preserved due to their role in maintaining plant diversity and cultural heritage (Gokhale, 2007; Kufuor & Omari, 2015). Sacred groves in India are most concentrated in regions such as the Western Ghats (Southern zone), the Northeast (e.g., Meghalaya), the Himalayas (North), and Rajasthan (West). This information provides a better understanding of the regional significance of sacred groves across the country (Bawa et al., 2004; Das & Ratha, 2013).

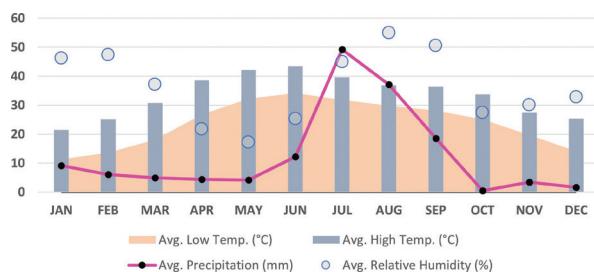
The SGs provide several advantages for nature conservation, such as the preservation of up to 85% of native species richness as refuges for rare and endemic species (Rösch et al., 2015). Other than this, local people can preserve their biodiversity for a long time because of cultural value that lasts for generations (Manna & Roy, 2021). They are also home to variety of medicinal plants (Ma et al., 2022), act as wildlife corridors or buffer zones for protected areas (Ishii et al., 2010), seed dispersal and pollination (Rajasri et al., 2017), erosion control and water resources (Ma et al., 2022).

Some SGs represent remnants of ancient, continuous forests (Scull et al., 2017), whereas others appear to be regenerated forests (Bhagwat et al., 2014). People are diverse and dynamic, and their religions and practices affect management of SGs (Dove et al., 2011). Such as the most widespread historical sites of Eurasian steppes

are 'kurgans' (ancient burial mounds) which embody important historical, spiritual, cultural, and conservational values (Deák et al., 2019). Thus, SGs represent how humans and environment interact dynamically and are essential for preserving cultural values along with ecological assets across cultures and regions. Other than this, firewood, medicinal or ceremonial plants, and nontimber forest products including fruits and seeds can be found in SGs. They also host prayer, ceremonial, and ancestor worship (Lynch et al., 2018). Stewards of SGs can maintain high habitat quality, limit chronic and acute forest disturbance and facilitate passive restoration (Bhagwat et al., 2014). In India, SGs hold profound ecological and socio-cultural importance, often serving as repositories of traditional knowledge and biological diversity. These groves can range in size from small areas with a few trees to extensive hectares of greenery preserved due to their association with specific deity.

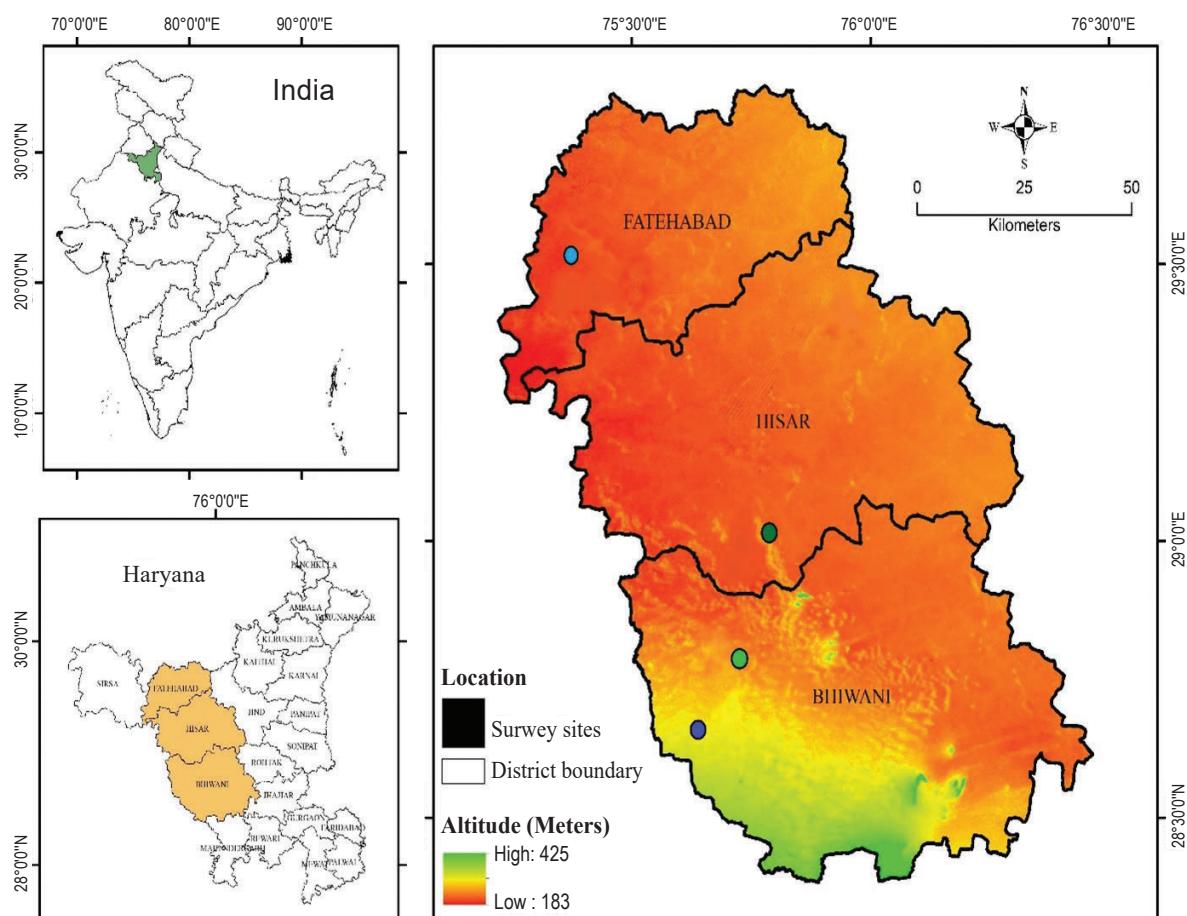
The present study focused on sacred groves (SGs) in Western Haryana, a semi-arid region in northern India with a sub-tropical climate, where forest cover is limited to only 3.53% of the total geographical area (ISFR, 2021). Although SGs are traditionally regarded as well-protected ecosystems, those in this region are increasingly vulnerable to anthropogenic pressures such as urbanization, land-use changes, overharvesting, pollution from religious activities, and expansion of villages into grove areas. The absence of tribal communities, who historically played a key role in safeguarding these groves, has further intensified these threats. Compounding the issue is a decline in traditional conservation practices and cultural values, leading to erosion of local stewardship over these ecologically valuable sites.

Despite their cultural and ecological significance, there is a lack of comprehensive prior ecological assessments. To address this critical gap, a preliminary survey was conducted to create an inventory of sacred groves across the region. Study sites were selected based on their ecological uniqueness, cultural relevance, and accessibility, with the objective of generating data that could inform targeted conservation strategies and support the long-term sustainability of these threatened ecosystems. Hence, the current study was conducted to investigate a total of four SGs from the four different forest ranges of western Haryana for a comprehensive ecological assessment to understand the phytodiversity and soil nutrient profile dynamics.


## Materials and methods

### Study site

A preliminary survey was conducted across Western Haryana to create an inventory of SGs, marking the first systematic documentation of these ecosystems in the region. Based on the preliminary survey across Western Haryana, four SGs—Bidola, Makrana Johra, Sultanpur, and Dhingsara—were randomly selected, one from each of the Tosham (Bhiwani), Behal (Bhiwani), Hansi (Hisar), and Fatehabad forest ranges, respectively, for in-depth ecological study (Figure 1). This selection method ensured a representative spatial distribution, enabling the generation of region-specific ecological insights while facilitating thorough field investigations.


The study focused on sacred groves in the semi-arid region of Western Haryana, characterized by undulating sandy plains and bagar. The Thar Desert, which is situated

in close vicinity, significantly influences the semiarid and dry climate of the region. The monsoon season is the one in which most of the annual rainfall in the research region is received. The map of study site and the climograph, are shown in Figure 1 and Figure 2.



**Figure 2:** Climograph of the selected districts of Western Haryana showing mean average temperature, precipitation, and humidity ([www.worldweatheronline.com](http://www.worldweatheronline.com)).

**Slika 2:** Klimogram izbranih območij Zahodnega Hayrana s povrečno temperaturo, padavinami in vlažnostjo ([www.worldweatheronline.com](http://www.worldweatheronline.com)).



**Figure 1:** Map showing the location of Haryana in India and the SGs selected for the present study.

**Slika 1:** Zemljevid z lokacijo območja Hayrana v Indiji in izbrani SG v raziskavi.

## Sampling of vegetation and data analysis

For the evaluation of distribution and quantification of phytodiversity, in-depth analyses were required in the study area, so several field visits were performed in the selected SGs. The study specifically utilized the widely recognized and important random quadrat sampling method (Hill, 2005). A total of 60 quadrats were plotted in the selected SGs i.e., 15 quadrats on each SG. Enumeration of trees and climbers was done in the quadrats of size 20×20 m whereas for shrubs and herbs, quadrats of size 5×5 m and 1×1 m were used respectively (Cottam & Curtis, 1956). To measure the Circumference at Breast Height during sampling, the tree species girth was noted at 1.37 meters from the ground using measuring tape. For shrubs and climbers, the circumferences were taken at 5 cm from the ground. Whereas the diameter of the herbs was measured just above the ground using Vernier callipers.

Subsequently, the vegetational data was analysed using the phytosociological parameters viz., density (D), frequency (F), abundance (A) and basal area (B.A.) following Misra (1968). The relative values of F, D, and B.A. were calculated after that to obtain the IVI (Important Value Index) value for the encountered plant species following Phillips (1959) and Curtis (1959), using the formula: *Important Value Index (IVI)* =  $RF\% + RD\% + RDo\%$ .

Other than this, to understand the distribution pattern of plant species, Abundance to Frequency ratio (A/F) was estimated following Cottam and Curtis (1956) for each species viz., regular (less than 0.025), random (0.025 to 0.05) and contiguous (more than 0.05). The frequency class distribution pattern was also obtained for the selected SGs to understand the nature (Homogenous or heterogenous) of plant communities occurring in them (Raunkiaer, 1918). Other than this, values of different vegetation indices were calculated for the diversity analysis of the four SGs. For this diversity index (Shannon & Wiener, 1963), dominance index (Simpson, 1949), index of evenness (Pielou, 1966) for species equitability and index for species richness (Margelef, 1958) were deliberated.

The soil samples were collected in the 4 SGs from each quadrat, taken at a depth of 0–30 cm. After removing any big stones, the soil samples were brought to the lab where they were first air dried and sieved (pore size – 2 mm). Using a conductivity meter, the electrical conductivity (EC) and soil pH of a saturated soil paste extract were measured (Rhoades 1996; Thomas 1996). Organic Carbon (OC) content of the soil samples was determined following Nelson & Sommers (1996). Soil Nitrogen content

(N), Phosphorus content (P), and Potassium content (K) were analysed according to Jackson (1973), Olsen et al. (1954), and Pratt (1965), respectively.

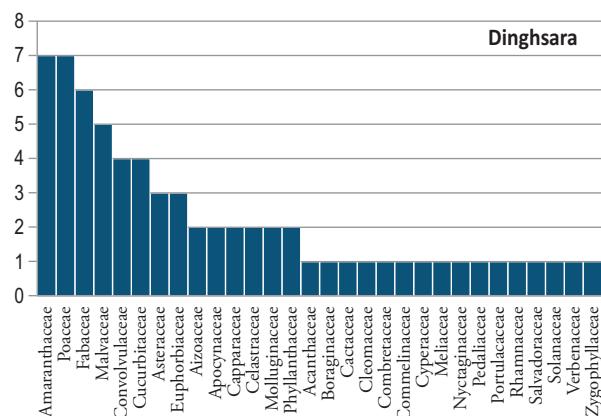
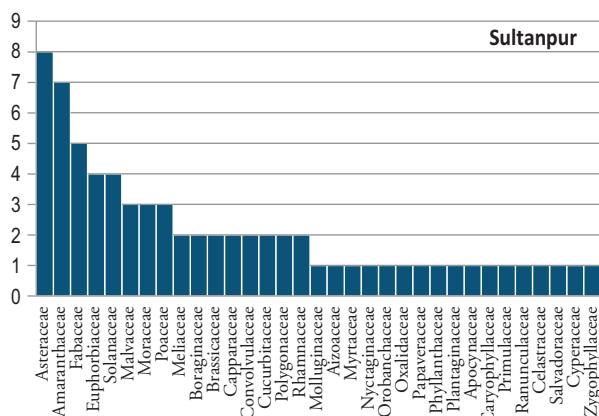
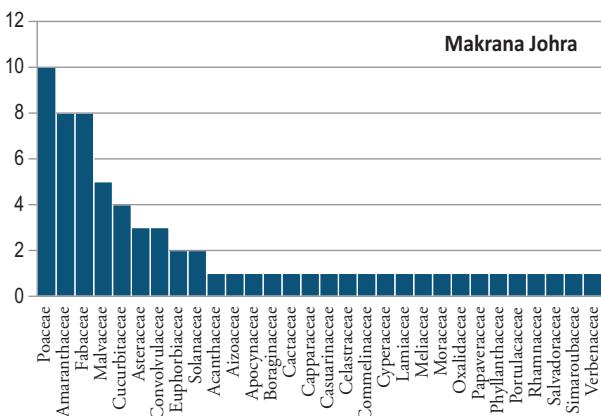
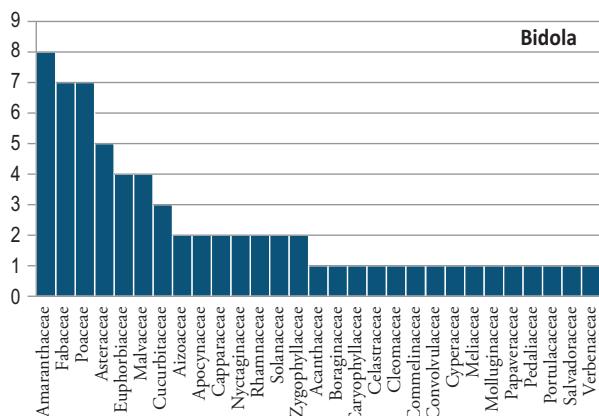
## Statistical analysis

Tukey *post-hoc* analysis was performed on the soil data and a box plot was formed using R program (R 4.4.1). Additionally, the two-tailed Carl-Pearson Coefficient was computed between the various floristic and soil parameters that were determined during the investigation and a heatmap was generated to facilitate comprehension of the correlation using R program (R 4.4.1).

## Results and Discussion

### Phytodiversity

A total of 130 plant species were documented in this study, comprising 21 trees, 12 shrubs, 86 herbs, and 11 climbers, classified across 31 families. The Sultanpur SG exhibited the highest diversity of tree species (13), followed by Makrana Johra (11), Bidola (9), and Dhingsara (8). In terms of herbaceous species, Sultanpur SG also demonstrated the greatest richness, with 47 species recorded, while Makrana Johra SG led in the diversity of shrub (12) and climber species (8). These findings suggest a substantial degree of plant diversity within the region, attributable to the interplay of topographic, edaphic, and physiographic conditions.





The analysis revealed an uneven distribution of species across the encountered families, where approximately half of the species belonged to merely five families, with the remaining species distributed among 26 families. Notably, a significant number of families were represented by only a single species (Figure 3). The family Poaceae was identified as the most dominant, followed in succession by Apocynaceae, Fabaceae, Malvaceae, among others. The predominance of Poaceae aligns with findings by Dhiman et al. (2024) in the lower altitudinal ranges of Morni Hills, Haryana, and in the SG of Midnapore (West Bengal) as reported by Sen and Bhakat (2020), along with Harikesh et al. (2020) in the community forests of Haryana and Garg et al. (2020) in the semi-arid forests of Aravali Hills.

Species-family richness analysis (Figure 3) indicated that Poaceae, Amaranthaceae, and Fabaceae were the most species-rich families in Bidola, Makrana Johra, and Dhingsara SG. Conversely, Sultanpur exhibited a maximum number of species within the Asteraceae family, followed by Amaranthaceae and Fabaceae. The dominance of Asteraceae has been corroborated in studies by Rashid et al. (2021), Dhiman et al. (2021), and Waheed

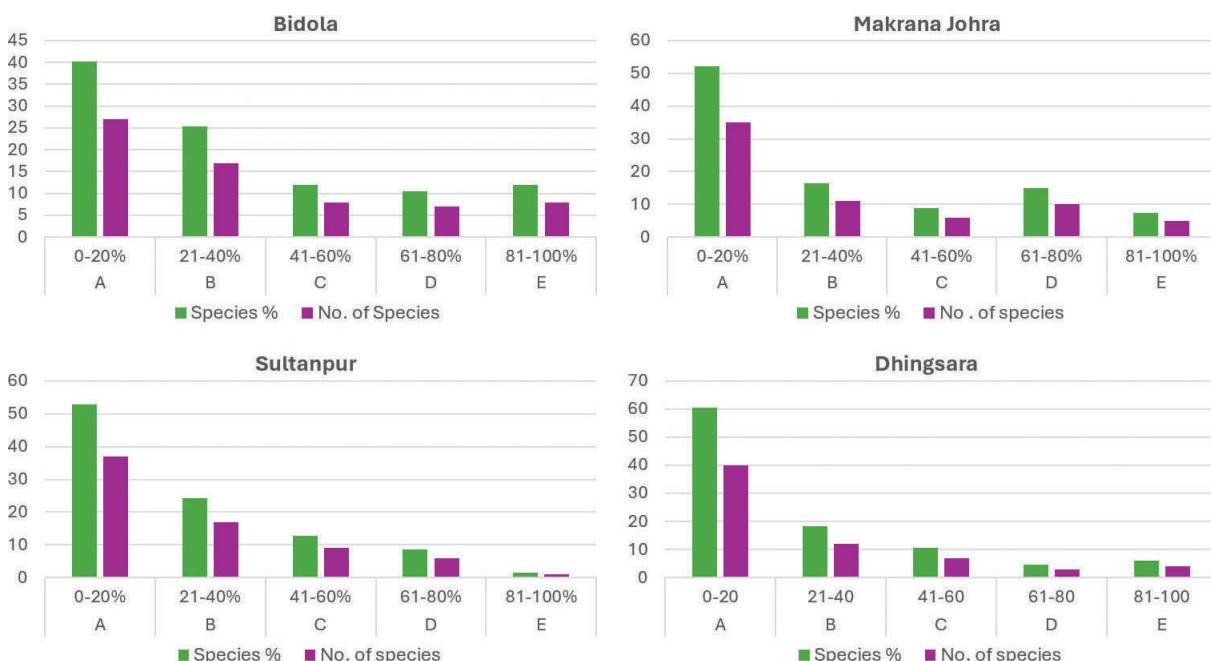


et al. (2022), while Amaranthaceae's prominence was highlighted by Prakash et al. (2022). This is because of the prevailing disturbances in these ecosystems as the endurance of Asteraceae family to tropical disturbance regimes places plant species belonging to this in an advantageous position to potentially dominate the disturbed ecosystems, also supported by Neto et al. (2017) and Arora et al., (2024).

The Poaceae family is arguably the most successful group of plants, characterized by their widespread presence in angiosperm habitats, ecological dominance, and notable species diversity. Their success can be attributed to several factors: their remarkable ability to colonize and persist in various environments, their effective long-distance dispersal mechanisms, and their ecological adaptability. Additionally, they exhibit tolerance to disturbances and have the capacity to modify ecosystems through processes such as fire and mammalian herbivory (Linder et al., 2017).



**Figure 3:** Proportion of families covering encountered plant species during the present study (left) and graphs comparing the species-family richness in the four SGs (right).


**Slika 3:** Delež družin rastlinskih vrst v raziskavi (levo) in grafi s primerjavo bogstva družin v štirih SG (desno)

The prevalence of Fabaceae plants, following Poaceae, is characterized by their symbiotic nodulated roots and rhizobacteria, which contribute to the enrichment of soil with biologically accessible nitrogen through  $N_2$  fixation in the SGs (Singh et al., 2019; Joshi & Garkoti, 2020). Processes such as direct nutrient fixation, the deposition of organic matter from litter fall, root exudation, and rhizosphere aeration foster the activity of mutualistic aerobic microorganisms, thereby enhancing nutrient cycling and expanding the soil nutrient pool (Tang et al., 2018). Nutrient-rich soils facilitate the germination of seeds and saplings, while taxa that are unable to generate their own nutrient islands beneath their canopies rely on nutrients from other nutrient-fixing plants (Joshi & Garkoti, 2020).

The highest frequency of *Acacia tortilis* was recorded in Bidola, Makrana Johra, and Dhingsara within the tree stratum, while *Acacia nilotica* was predominantly observed in Sultanpur SG. This variation highlights their distinct niche preferences and ability to establish a presence across different geographic areas. While Bidola, Makrana Johra, and Dhingsara are situated in drier, higher elevations with sandy to loamy soils and lower moisture availability, Sultanpur is situated in a relatively low-lying area with finer alluvial soils and significantly higher soil moisture. The distribution and dominance of tree species are probably influenced by these site-specific differences in edaphic and microclimatic circumstances. Conversely, *Capparis decid-*

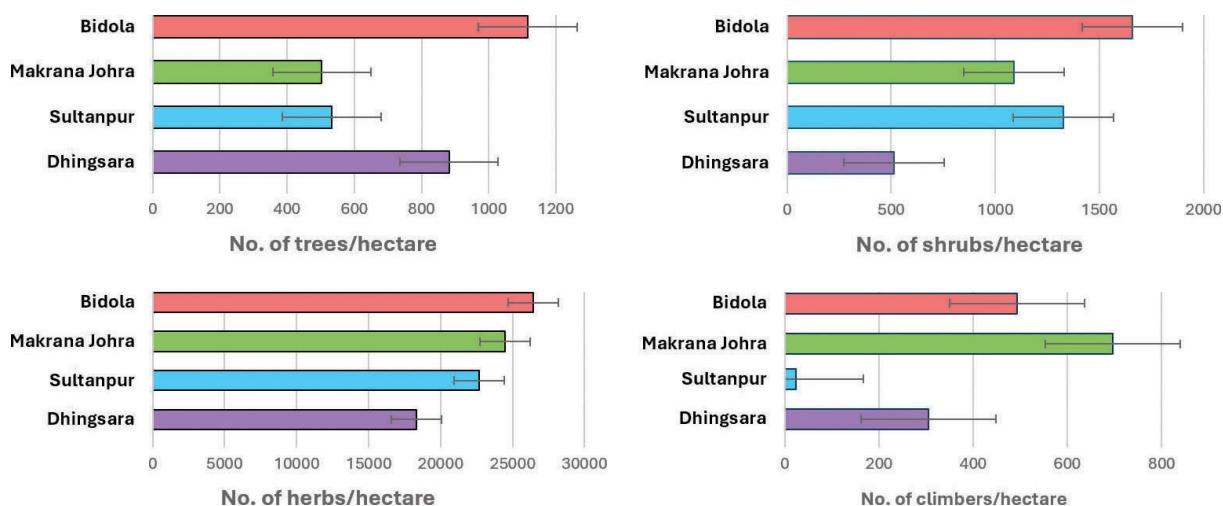
*ua* exhibited the greatest frequency in Bidola, Sultanpur, and Dhingsara among shrubs, whereas *Abutilon indicum* was found most frequently in Makrana Johra (Table 1–4). These genera are prevalent in semi-arid zones and have been documented in numerous studies, such as those by Habib et al. (2016), Harikesh et al. (2020), Norman et al. (2024), Adoum (2024), and Arshad et al. (2024).

Additionally, the species distribution curve for the selected sacred groves (SGs) was analyzed using frequency classes (Raunkiaer 1918; McIntosh 1962). According to Raunkiaer's law, species within a community can be classified as either common or rare. Any deviation from the typical J-shaped trajectory of a normal frequency distribution suggests an ecosystem disturbance. Raunkiaer's normal species occurrence ratio ( $A > B > C \geq D < E$ ) indicates a homogeneous plant community when the frequency aligns with the J-shaped curve. The analysis demonstrates that the sacred groves of Bidola and Dhingsara conformed to Raunkiaer's law, exhibiting a J-shaped species distribution curve indicative of a homogeneous plant community. In contrast, Makrana Johra and Sultanpur did not follow this pattern, suggesting greater heterogeneity (Figure 4). This observation is supported by Deil et al. (2021), who noted that in their study of the SGs in NW-Morocco, the proximity of sacred sites to intensively used agricultural landscapes in lowland areas correlates with a diminished conservation propensity, thereby indicating ecosystem disturbance.



**Figure 4:** Frequency class distribution of plant species across the selected SGs.

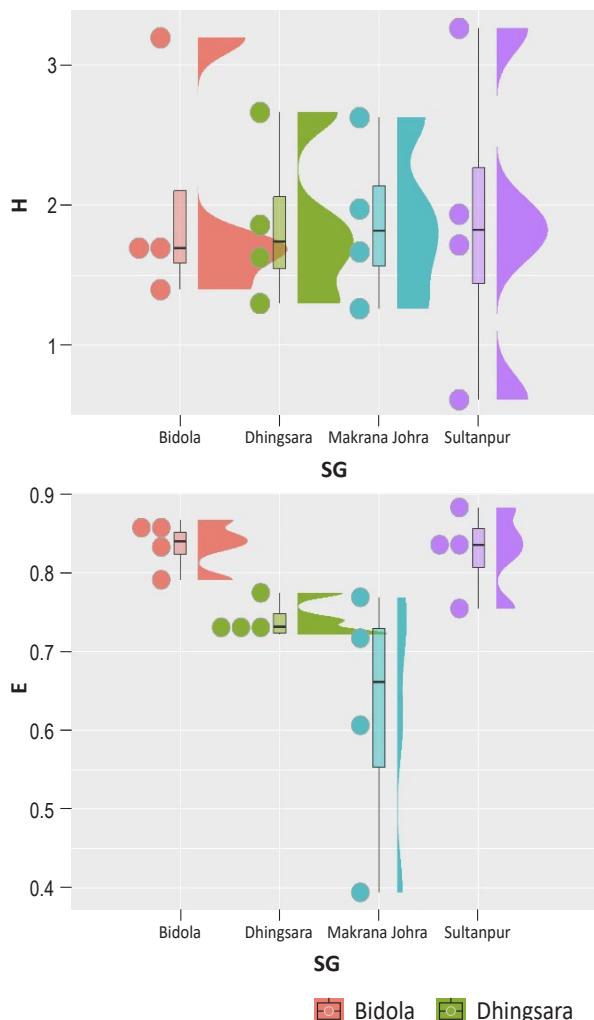
**Slika 4:** Porazdelitev frekvenčnih razredov rastlinskih vrst v izbranih SG.


In the four surveyed study groups (SGs), a considerable variation in species density was observed among trees, shrubs, herbs, and climbers (Figure 5). Notably, Bidola SG demonstrated the highest density across trees, shrubs, and herbs, while Makrana Johra exhibited the greatest stand density for climbers (Tables 1–4, Figure 5). The individual density of tree species ranged from 5 to 432 individuals per hectare (Ind./ha), 5 to 296.7 Ind./ha, 3.33 to 185 Ind./ha, and 3.33 to 743.33 Ind./ha in Bidola, Makrana Johra, Sultanpur, and Dhingsara SGs, respectively. Both Bidola and Dhingsara displayed higher tree densities (1115 Ind./ha and 881.67 Ind./ha, respectively) compared to Makrana Johra and Sultanpur SGs (503.3 Ind./ha and 533.3 Ind./ha, respectively). A higher tree density in Bidola indicates better habitat quality, while reduced densities in other SGs suggest ecological stress or degradation due to the influence of human pressures, such as lopping, trampling, and scraping, also supported by Aakash et al. (2019).

In addition to the aforementioned analyses, abundance-to-frequency (A/F) values were calculated for each species across the four study groups (SGs). The present investigation revealed that all plant species conformed to a contiguous distribution pattern, as indicated by an A/F ratio surpassing 0.05. This contiguous distribution of plant species is frequently observed in natural forest ecosystems and has been documented in numerous studies (Kittur et al., 2014; Dhiman et al., 2020; Kumar & Verma, 2024).

Basal area (B.A.) analysis indicated that Sultanpur and Dhingsara exhibit significantly higher tree B.A. values (19.772 m<sup>2</sup>/ha and 15.507 m<sup>2</sup>/ha, respectively) compared

to Bidola and Makrana Johra SG, which recorded a notably lower B.A. of 7.693 m<sup>2</sup>/ha (495). The elevated B.A. observed in Sultanpur can be attributed to the presence of tree species characterized by substantial girth classes, including *Salvadora oleoides*, *Ficus benghalensis*, and *Ficus religiosa*, among others. These findings are comparable to those reported by Meena et al. (2016), who observed a B.A. of 26.74 m<sup>2</sup>/ha in a similar semi-arid forest ecosystem in Delhi, indicating comparable vegetation structure and dominance of large-canopy species. Similarly, Yatar et al. (2024) documented a B.A. of 16.47 m<sup>2</sup>/ha in a semi-arid landscape of Thailand, highlighting the influence of regional climatic conditions and species composition on basal area. The similarity in B.A. values across these studies suggests that structural parameters in semi-arid tree-dominated ecosystems are influenced by common ecological factors such as species traits, anthropogenic pressures, and edaphic conditions.

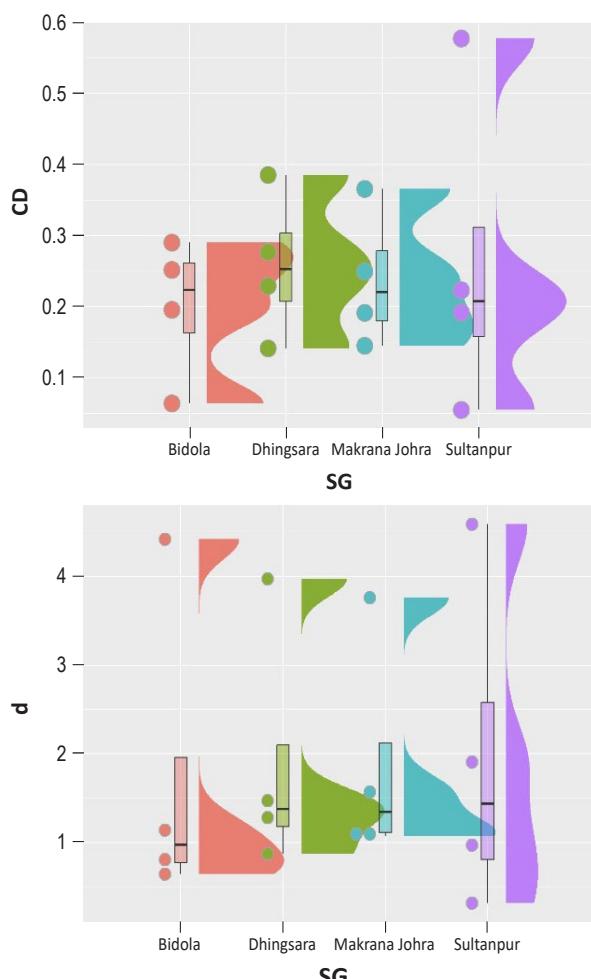

The Importance Value Index (IVI) is pivotal for understanding the ecological significance of various species, as a high IVI value indicates a species' dominance within a community (Kashian et al., 2003). This metric serves to quantify the degree of dominance and assess the role and functionality of a species within the plant community structure. In the study area of Bidola, *Acacia tortilis* emerged as the most prevalent tree species, recording an IVI of 89.096. Conversely, in Makrana Johra and Sultanpur, *Salvadora oleoides* dominated with IVI values of 132.39 and 98.991, respectively. Additionally, *Prosopis juliflora* was identified as the most prevalent tree species in Dhingsara SG, with an IVI of 124.94.



**Figure 5:** Stand density (per hectare) of trees, shrubs, herbs and climbers in the four SGs.

**Slika 5:** Gostota sestojev (na hektar) dreves, grmov, zelišč in plezalk v štirih SG.

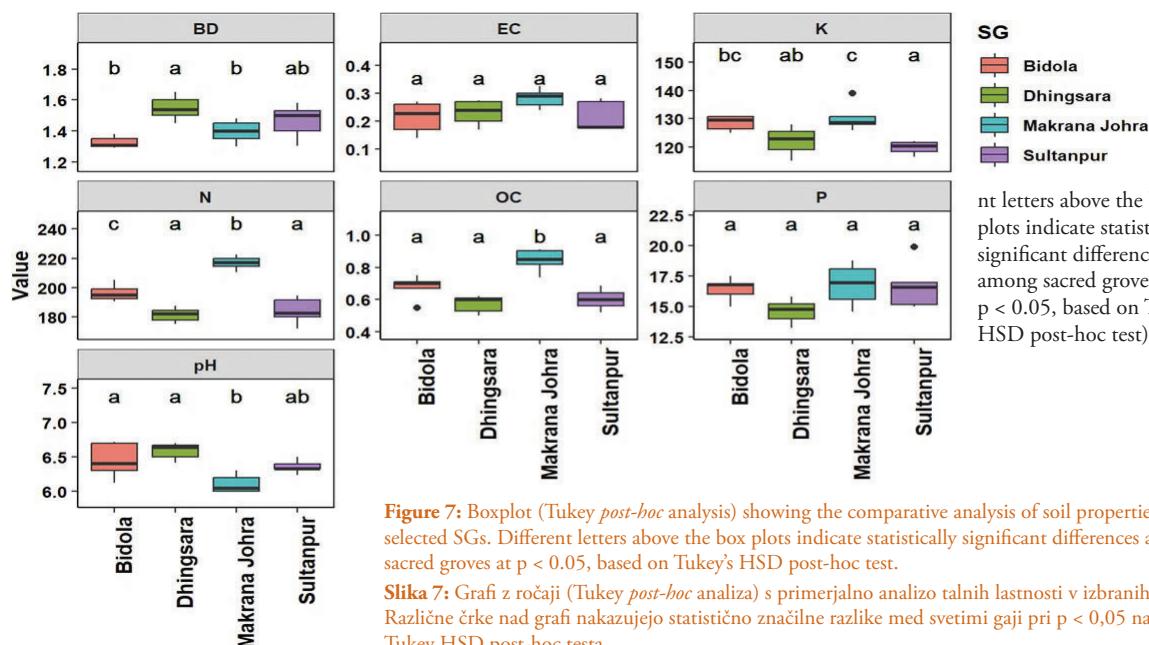
Among shrub species, *Capparis decidua* was prominent across Bidola (131.46), Makrana Johra (105.76), and Dhingsara (135.65), showcasing the highest IVI values. In contrast, *Parthenium hysterophorus* attained the highest IVI in Sultanpur SG, with a value of 96.392. When examining herbaceous plants, *Peristrophe bicalyculata* was the most prevalent in Bidola (44.834), Makrana Johra (95.544), and Dhingsara (97.599), whereas *Polygonum aviculare* contributed to the dominance in Sultanpur SG with an IVI of 27.269. Furthermore, *Cucumis callosus* exhibited the highest IVI in Bidola (126.08), Makrana Johra (129.65), and Dhingsara (175.72), while *Momordica dioica* recorded a notable dominance as the climber species in Sultanpur SG, with an IVI of 209.45 (see Table 1–4).




**Figure 6:** Raincloud plots representing the values of diversity indices i.e., Shannon Weiner diversity index ( $H'$ ), Simpson's concentration of dominance (CD), Pielou index of evenness (E) and Margalef index of species richness (d) in the four SGs.

**Slika 6:** Grafi diverzitetnih indeksov, Shannon diverzitetni indeks ( $H'$ ), Simpsonova koncentracija dominante (CD), Pielouev indeks enakomernosti (E) in Margalefov indeks vrstnega bogastva (d) v štirih SG.

## Diversity Indices


The selected study sites demonstrated a significant diversity of plant species, as evidenced by the  $H'$  values for the identified vegetation in various study groups (SGs), which ranged from 1.26 to 1.935 for trees, 1.625 to 1.971 for shrubs, and 2.625 to 3.262 for herbaceous plants. Consequently, Sultanpur exhibited the highest level of species diversity. According to Kent & Coker (1992), the  $H'$  value typically ranges between 1.5 and 3.5, seldom exceeding 4.5. An  $H'$  index greater than 3.0 is categorized as high; values between 2.0 and 3.0 are considered medium; those ranging from 1.0 to 2.0 are classified as low; and values below 1.0 are designated as extremely low. Diverse ecosystems are also characterized by a broad spectrum of species



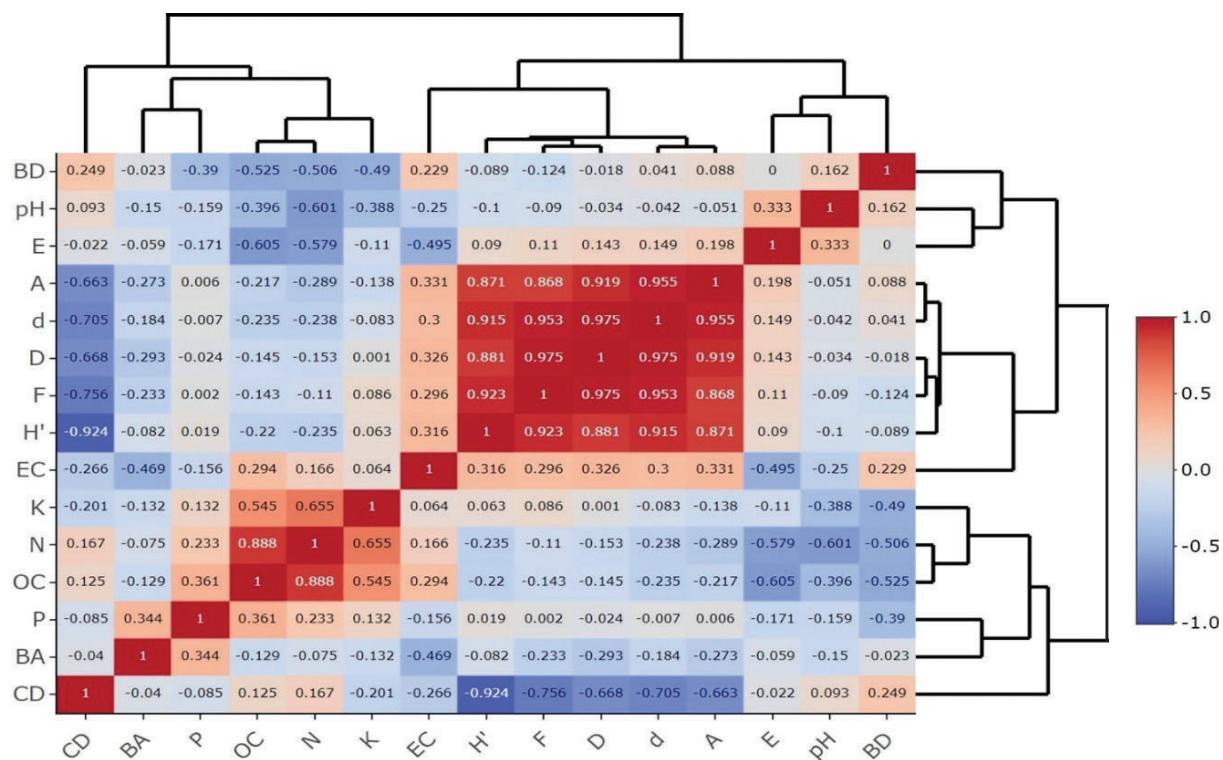
populations, each possessing a variety of functional traits that contribute to the sustainability of ecosystem services throughout their lifespans (Himanshi et al., 2021).

Furthermore, Dhingsara SG exhibited the highest mean species dominance (0.142–0.385), suggesting a relatively uneven distribution of a few dominant species compared to other groves in the study. These values are higher than those reported by Dhiman et al. (2020) (0.085–0.252), indicating a potential shift in community structure, possibly due to site-specific disturbances or microclimatic factors. Nevertheless, the values still fall within the broader range observed across subtropical Indian forests (0.03–0.92; Malik & Bhatt, 2016; Singh et al., 2016; Saikia et al., 2017), suggesting that the groves retain natural heterogeneity despite anthropogenic pressures. A lower dominance value typically implies higher diversity, and this was reflected in other groves such as Sultanpur, which also showed greater evenness.

Evenness values, a measure of how evenly individuals are distributed among species, were highest in Sultanpur SG (0.755–0.883). These values are comparable to or slightly higher than those reported in other natural forests – for instance, Sarkar (2016) (0.73–0.85), Dhiman et al. (2020) (0.835–0.944), and Sherafu et al. (2024) (0.87). This high evenness suggests a stable and resilient community structure in Sultanpur SG, where no single species is overly dominant. In contrast, managed or degraded forests often show lower evenness due to dominance by a few stress-tolerant species. Thus, the observed evenness values reaffirm the ecological integrity and conservation value of these groves.



**Figure 7:** Boxplot (Tukey post-hoc analysis) showing the comparative analysis of soil properties in selected SGs. Different letters above the box plots indicate statistically significant differences among sacred groves at  $p < 0.05$ , based on Tukey's HSD post-hoc test.


**Slika 7:** Grafi z ročaji (Tukey post-hoc analiza) s primerjalno analizo talnih lastnosti v izbranih SG. Različne črke nad grafi nakazujejo statistično značilne razlike med svetimi gaji pri  $p < 0,05$  na podlagi Tukey HSD post-hoc testa.

of EC, N, P, K and OC. In contrast, Dhingsara SG exhibited elevated pH and soil BD (Figure 7). Whereas Bidola showed least amount of BD and EC. Minimum value of soil pH was observed in Makrana Johra SG. While Dhingsara SG had least amount of N, P, K and OC, as shown in Figure 7. Soil pH affects nutrient uptake as well as plant growth. It measures the acidity and alkalinity of soil samples along with controlling availability of numerous plant nutrients (Singh et al., 2023).

Additionally, the two-tailed Carl-Pearson Coefficient was computed between the various floristic and soil parameters that were determined during the investigation. A heatmap was generated to facilitate comprehension of the correlation using R (Figure 8). The value of species dominance (CD) was negatively correlated with all these parameters, whereas a positive correlation was observed between Frequency (F), Density (D), Abundance (A), Shannon diversity value (H'), Margalef species richness (d), and electrical conductivity (EC). The value of soil Nitrogen (N) was also positively correlated with soil Organic Carbon (OC), Potassium (K), CD, Phosphorus (P), and EC, while it was negatively correlated with species

evenness (E), pH, and bulk density (BD). A very small but positive correlation was observed between H' and K. Akindele et al., (2021) also observed H' to be positively correlated with K but available P, N contents, pH and OC were not correlated with any of the biodiversity variables. The positive correlation between H' and EC is also supported by Malik and Haq (2022). But the negative correlation of H' with OC and N, contrasts with Malik and Haq (2022) who observed it to be positive.

Previous research has demonstrated that SGs, akin to forest fragments, exhibit high biodiversity and contribute significantly to ecosystem functions such as carbon sequestration (Parthasarathy & Naveen Babu, 2021), nutrient-rich soils (Dar et al., 2019b), improved water quality (Oliveira et al., 2017), groundwater recharge (Iftikhar Hussain et al., 2019), pathogen resistance (Quijas et al., 2010), and control of invasive species (Mace et al., 2019). Our findings support this view, as groves like Sultanpur showed notably high species richness, greater basal area values, and the presence of large-girthed native species such as *Salvadora oleoides* and *Ficus benghalensis*, indicating their ecological maturity and carbon storage



**Figure 8:** Correlation of the selected parameters (floristic and edaphic) in the study. F = Frequency; D = Density; A = Abundance, BA = Basal Area; H' = Shannon Wiener Index; CD = Simpson Index; E = Pielou Index, d = Margalef index, EC = Electrical conductivity, BD = Bulk density, N = Soil Nitrogen content, P = Soil Phosphorus content, K = Soil Potassium content, OC = Soil Organic Carbon.

**Slika 8:** Korelacija med izbranimi parametri (florističnimi in talnimi) v raziskavi. F = frekvencia; D = gostota; A = abundanca, BA = bazalna površina; H' = Shannon Wienerjev indeks; CD = Simpsonov indeks; E = Pielouev indeks, d = Margalefov indeks, EC = električna prevodnost, BD = gostota tal, N = vsebnost dušika v tleh, P = vsebnost fosforja v tleh, K = vsebnost kalija v tleh, OC = vsebnost organskega ogljika v tleh.

potential. Additionally, the recorded diversity includes several native, medicinal, and potentially rare or regionally significant species, highlighting the groves' role as in-situ conservation sites. A decline in floral diversity and species richness, as observed in degraded groves like Makrana Johra, can compromise ecosystem stability and services (Edrisi et al., 2020). Therefore, integrating scientific documentation of such sites with government-led conservation strategies and enhancing public awareness of their ecological and cultural significance is essential for long-term sustainability.

## Conclusions

The lack of data on sacred groves (SGs) across various study sites significantly hampers our understanding of their biodiversity-protecting benefits. The findings of the current study reveal that sacred groves in semi-arid Haryana possess rich floristic diversity, with species occupying varied ecological niches and exhibiting wide ecological amplitude, enabling deeper insights into ecosystem dynamics beyond what forest cover alone can provide. However, these ecosystems are vulnerable to biotic disturbances and the impacts of global climate change. Haryana's sacred groves face significant challenges, including habitat fragmentation, declining conservation practices, loss of local knowledge and inadequate management. They are threatened by encroachment, lack of legal protection, and youth disconnection from cultural traditions.

To ensure their viability, future conservation efforts must include awareness campaigns, legal protections, and biodiversity registers, with active community involvement in decision-making and management. While some sacred groves (SGs) are already under legal protection—either as deemed forests, community-managed lands, or recognized conservation sites—these provisions are often fragmented and inconsistently enforced. In many regions, the current legal status does not adequately prevent encroachment, resource exploitation, or ecological degradation. Moreover, a notable number of sacred groves across the country remain undocumented or lack formal recognition, further increasing their vulnerability. Therefore, it is crucial to initiate systematic identification and documentation of these groves and consider their designation as conservation reserves or community reserves under the Wildlife (Protection) Act, 1972 (Amended 2022). This enhanced legal status would offer structured protection while fostering community stewardship, supporting awareness initiatives, and promoting a conservation model that harmonizes ecological integrity with the preservation of cultural and spiritual values.

## Acknowledgements

The authors would like to acknowledge CSIR, New Delhi, for providing financial support (Junior Research Fellowship) to Aman Mahla and the Department of Botany, Maharishi Dayanand University, Rohtak, for providing resources that made this research possible.

## Author Contributions

Conceptualization, Writing – original draft, methodology, Formal analysis and investigation, Writing – review and editing: [Aman Mahla]; Writing – review and editing, Formal analysis: [Himanshi Dhiman]; Writing – review and editing: [Harikesh Saharan]; Writing – review and editing, Supervision, Validation: [Anita R Sehrawat]

## Declarations

**Conflict of interest:** The authors declare that there are no conflicts of interest.

**Funding:** Not applicable

**Ethical approval:** Not applicable

**Informed consent:** Not applicable

## Data availability

This material is the authors' own original work, which has not been previously published elsewhere and has no conflict of interest. The data generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

## ORCID iDs

Aman Mahla  <https://orcid.org/0000-0003-2326-1740>

Himanshi Dhiman  <https://orcid.org/0000-0001-6774-1231>

Harikesh Saharan  <https://orcid.org/0000-0002-2102-8091>

Anita Rani Sehrawat  <https://orcid.org/0000-0003-0594-1929>

## References

Adoum, D. O. N. A. (2024). Floristic structure and diversity of agrosylvopastoral systems of Batha in Chad. *World Journal of Advanced Science and Technology*, 5(1), 011–021. <https://doi.org/10.53346/wjast.2024.5.1.0028>

Akash, A., Navneet, N., & Bhandari, B. S. (2019). A community analysis of woody species in a tropical forest of Rajaji Tiger Reserve. *Environment and Ecology*, 37 (1): 48—55.

Akindele, T. F., Adekunle, V. A. J., & Lawal, A. (2021). Tree species diversity, abundance, and soil physico-chemical status of PSP 29, Akure Forest Reserve, Ondo State, Nigeria. *Journal of Research in Forestry, Wildlife and Environment*, 13(4), 120–129.

Arora, J., Manish, K., Nautiyal, D. C., Lakhapaul, S., & Pandit, M. K. (2024). Changes in vegetation composition and structure following landslide-induced disturbance in the Himalaya. *Journal of Asia-Pacific Biodiversity*, 17(4), 704–711. <https://doi.org/10.1016/j.japb.2024.06.005>

Arshad, F., Haq, S. M., Waheed, M., Jameel, M. A., & Bussmann, R. W. (2024). Environmental variables drive medicinal plant composition and distribution in various forest types of subtropical region in Pakistan. *Ecological Frontiers*, 44(2), 234–246. <https://doi.org/10.1016/j.chnaes.2023.05.004>

Bawa, K. S., Kress, W. J., Nadkarni, N. M., Lele, S., Raven, P. H., Janzen, D. H., & Guariguata, M. R. (2004). Sacred groves in the Western Ghats of India: Diversity and conservation implications. *Conservation Biology*, 18(3), 538–544.

Bhagwat, S. A., Nogué, S., & Willis, K. J. (2014). Cultural drivers of reforestation in tropical forest groves of the Western Ghats of India. *Forest Ecology and Management*, 329, 393–400. <https://doi.org/10.1016/j.foreco.2013.11.017>

Choudhary, P., Yadav, J. P., & Malik, P. (2015). Sacred groves in conservation of plant biodiversity in Mahendergarh district of Haryana. *Research Journal of Agriculture and Forestry Sciences*, 3(3), 6–10.

Cottam, G., & Curtis, J. T. (1956). The use of distance measures in phytosociological sampling. *Ecology*, 37(3), 451–460.

Curtis, J. T. (1959). *The vegetation of Wisconsin: an ordination of plant communities*. University of Wisconsin Pres.

Dar, J. A., Subashree, K., Raha, D., Kumar, A., Khare, P. K., & Khan, M. L. (2019). Tree diversity, biomass and carbon storage in sacred groves of Central India. *Environmental Science and Pollution Research*, 26(36), 37212–37227. <https://doi.org/10.1007/s11356-019-06854-9>

Das, P., & Ratha, P. (2013). Sacred groves and indigenous knowledge in Northeast India. *International Journal of Biodiversity*, 1(2), 78–86.

Deák, B., Tóth, C. A., Bede, Á., Apostolova, I., Bragina, T. M., Báthori, F., & Bán, M. (2019). Eurasian Kurgan Database—a citizen science tool for conserving grasslands on historical sites. *Hacquetia*, 18(2), 179–187. <https://doi.org/10.2478/hacq-2019-0007>

Deil, U., Frosch, B., Jäckle, H., & Mhamdi, A. (2021). Vegetation and flora of sacred natural sites in North-Western Morocco—landscape context and conservation value. *Tools for Landscape-Scale Geobotany and Conservation*, 391–422.

Dhiman, H., Saharan, H., & Jakhar, S. (2020). Floristic diversity assessment and Vegetation analysis of the upper altitudinal ranges of Morni Hills, Panchkula, Haryana, India. *Asian J Conserv Biol*, 9, 134–142.

Dhiman, H., Saharan, H., & Jakhar, S. (2021). Study of invasive plants in tropical dry deciduous forests—biological spectrum, phenology, and diversity. *Forestry Studies*, 74(1), 58–71. <https://doi.org/10.2478/fsmu-2021-0004>

Dhiman, H., Saharan, H., Punia, H., & Jakhar, S. (2024). Floristic status of the Himalayan foothills in Haryana—vegetation composition, diversity and population structure. *Forestry Studies*, 80(1), 90–109. <https://doi.org/10.2478/fsmu-2024-0006>

Dove, M. R., Sajise, P. E., & Doolittle, A. A. (Eds.). (2011). *Beyond the sacred forest: complicating conservation in Southeast Asia*. Duke University Press.

Dudley, N., Bhagwat, S., Higgins-Zogib, L., Lassen, B., Verschuuren, B., & Wild, R. (2012). Conservation of biodiversity in sacred natural sites in Asia and Africa: a review of the scientific literature. *Sacred natural sites*, 19–32.

Edrisi, S. A., El-Keblawy, A., & Abhilash, P. C. (2020). Sustainability analysis of Prosopis juliflora (Sw.) DC based restoration of degraded land in North India. *Land*, 9(2), 59. <https://doi.org/10.3390/land9020059>

Fnd, A., Pardi, F., & Ruziman, H. H. (2024, March). Floristic composition and species diversity at Gunung Inas forest reserve, Kedah, Peninsular Malaysia. In *IOP Conference Series: Earth and Environmental Science* (Vol. 1316, No. 1, p. 012005). IOP Publishing. <https://doi.org/10.1088/1755-1315/1316/1/012005>

Forest Survey of India. (2021). *India state of forest report (ISFR)*. <https://fsi.nic.in>. Accessed 21 January 2025

Gokhale, Y. (2007). Sacred groves of India: An ecological and cultural study. *Indian Journal of Ecology*, 34(1), 45–58.

Haan, J. D., & Harry, V. (2014). Effects of organic matter input on nitrate leaching and crop yield in arable and vegetable cropping on sandy soil in the Netherlands. In *CMDS Cordovil. The Nitrogen challenge: building a blueprint for nitrogen use efficiency and food security. Proceedings 18th Nitrogen Workshop, Lisbon Portugal* (pp. 30–6). <http://www.nitrogenworkshop.com/#/abstracts/4585708037>. Accessed 21 January 2025

Habib, G., Khan, N. A., Sultan, A., & Ali, M. (2016). Nutritive value of common tree leaves for livestock in the semi-arid and arid rangelands of Northern Pakistan. *Livestock Science*, 184, 64–70.

Harikesh, (2022). Ecological studies on the community forests of southwestern Haryana (Doctoral dissertation, Kurukshetra University, Kurukshetra). <http://hdl.handle.net/10603/421628>.

Harikesh, H., & Jakhar, S. (2020). Floristic diversity and vegetation analysis of the community forests of South-West Haryana, India. *Current Botany*, 11, 51–59. <https://doi.org/10.25081/cb.2020.v11.6032>

Hill, D. A. (Ed.). (2005). *Handbook of biodiversity methods: survey, evaluation and monitoring*. Cambridge University Press.

Himanshi, Harikesh, Jakhar, S. (2021). Analysis of Functional Leaf Trait Variation among the Dominant Understorey Species in the Pine Forest of Morni Hills, Panchkula, Haryana. *Journal of Tropical Life Science*, 11(2), 233–240. <https://doi.org/10.11594/jtls.11.02.13>

Iftikhar Hussain, M., El-Keblawy, A., & Tsombou, F. M. (2019). Leaf age, canopy position, and habitat affect the carbon isotope discrimination and water-use efficiency in three c3 leguminous *prosopis* species from a hyper-arid climate. *Plants*, 8, 1–11. <https://doi.org/10.3390/plants8100402>

Ishii, H. T., Manabe, T., Ito, K., Fujita, N., Imanishi, A., Hashimoto, D. & Iwasaki, A. (2010). Integrating ecological and cultural values toward conservation and utilization of shrine/temple forests as urban green space in Japanese cities. *Landscape and Ecological Engineering*, 6(2), 307–315. <https://doi.org/10.1007/s11355>

IUCN. (2009). *Indigenous and community conserved areas*. <https://www.iucn.org/about/union/commissions/ceesp/topics/governance/icca/index.cfm>. Accessed 21 January 2025

Jackson, M. L. (1973). Soil chemical analysis, pentice hall of India Pvt. Ltd., New Delhi, India, 498, 151–154.

Joshi, R. K., & Garkoti, S. C. (2020). Litter dynamics, leaf area index and forest floor respiration as indicators for understanding the role of Nepalese alder in white oak forests in central Himalaya, India. *Ecological Indicators*, 111, 106065. <https://doi.org/10.1016/j.ecolind.2020.106065>.

Kashian, D. M., Barnes, B. V., & Walker, W. S. (2003). Ecological species groups of landform-level ecosystems dominated by jack pine in northern Lower Michigan, USA. *Plant Ecology*, 166, 75–91.

Kittur, B. H., Swamy, S. L., Bargali, S. S., & Jhriya, M. K. (2014). Wildland fires and moist deciduous forests of Chhattisgarh, India: divergent component assessment. *Journal of Forestry Research*, 25, 857–866.

Klepis, P., Orlowska, I. A., Kent, E. F., Cardelús, C. L., Scull, P., Wassie Eshete, A., & Woods, C. (2016). Ethiopian church forests: a hybrid model of protection. *Human Ecology*, 44, 715–730.

Kufuor, M., & Omari, M. (2015). Sacred groves in West Africa: Conservation and culture. *African Studies Review*, 58(2), 25–42.

Kumar, A., & Verma, R. K. (2024). Species composition, diversity and distribution of woody species in a tropical dry deciduous Forest of Jalaun district, Uttar Pradesh, India. *J. Indian bot. Soc.*, 104(2), 78–84. <https://doi.org/10.61289/jibs2024.10.12.1212>

Leakey, R. R., Tientcheu Avana, M. L., Awazi, N. P., Assogbadjo, A. E., Mabhaudhi, T., Hendre, P. S., ... & Manda, L. (2022). The future of food: Domestication and commercialization of indigenous food crops in Africa over the third decade (2012–2021). *Sustainability*, 14(4), 2355.

Linder, H. P., Lehmann, C. E., Archibald, S., Osborne, C. P., & Richardson, D. M. (2018). Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. *Biological Reviews*, 93(2), 1125–1144.

Lynch, L., Kokou, K., & Todd, S. (2018). Comparison of the ecological value of sacred and nonsacred community forests in Kaboli, Togo. *Tropical Conservation Science*, 11, 1940082918758273. <https://doi.org/10.1177/1940082918758273>.

Ma, J., Tam, C., Li, T., Yu, G., Hu, G., Yang, F., Wang, J., & Wu, R. (2022). Sacred natural sites classification framework based on ecosystem services and implications for conservation. *Conservation Science and Practice*, 4, e12638. <https://doi.org/10.1111/csp2.12638>

Mace, G. M., Norris, K., & Fitter, A. H. (2012). Biodiversity and ecosystem services: a multilayered relationship. *Trends in ecology & evolution*, 27(1), 19–26. <https://doi.org/10.1016/j.tree.2011.08.006>

Malik, Z. A., & Haq, S. M. (2022). Soil Chemical Properties–Variation with Altitude and Forest Composition: A Case Study of Kedarnath Wildlife Sanctuary, Western Himalaya (India). *Journal of Forest and Environmental Science*, 38(1), 21–37.

Manna, S., & Roy, A. (2021). Indian sacred groves: Floristic diversity, Ecology and conservation. *International Journal of Chemical and Environmental Sciences*, 3(1), 32–45.

Margalef, R. (1958). Temporal succession and spatial heterogeneity in phytoplankton.

McIntosh, R. P. (1962). Raunkiaer's "law of frequency". *Ecology*, 43(3), 533–535.

Meena, A., Hanief, M., Bidalia, A., Dinakaran, J., & Rao, K. S. (2016). Structure, composition and diversity of tree strata of semi-arid forest community in Delhi, India. *Phytomorphology*, 66(3-4), 95–102.

Misra, R. (1968). *Ecology work book*. Oxford and IBH Publishing Co.

Naveen Babu, K., Harpal, B., & Parthasarathy, N. (2021). Changes in tree diversity and carbon stock over a decade in two Indian tropical dry evergreen forests. *Geology, Ecology, and Landscapes*, 5(1), 7–18.

Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. *Methods of soil analysis: Part 2 chemical and microbiological properties*, 9, 539–579.

Neto, C., Cardigos, P., Oliveira, S. C., & Zêzere, J. L. (2017). Floristic and vegetation successional processes within landslides in a Mediterranean environment. *Science of the Total Environment*, 574, 969–981. <https://doi.org/10.1016/j.scitotenv.2016.09.119>

Norman, A. K., Ahmed, M., & El Digair, E. M. (2024). Changes of Tree/shrubs Biodiversity Under Semi-arid Conditions of Sudan, Khartoum State (Eastern Blue Nile). *Khartoum State (Eastern Blue Nile)* (February 24, 2024). <https://doi.org/10.2139/ssrn.4737353>.

Oliveira, M. T., Souza, G. M., Pereira, S., Oliveira, D. A., Figueiredo-Lima, K. V., Arruda, E., & Santos, M. G. (2017). Seasonal variability in physiological and anatomical traits contributes to invasion success of *Prosopis juliflora* in tropical dry forest. *Tree Physiology*, 37(3), 326–337. <https://doi.org/10.1093/treephys/tpw123>.

Olsen, S. R. (1954). *Estimation of available phosphorus in soils by extraction with sodium bicarbonate* (No. 939). US Department of Agriculture.

Phillips, E. A. (1959). Methods of vegetation study.

Pielou, E. C. (1966). Species-diversity and pattern-diversity in the study of ecological succession. *Journal of theoretical biology*, 10(2), 370–383. [https://doi.org/10.1016/0022-5193\(66\)90133-0](https://doi.org/10.1016/0022-5193(66)90133-0)

Prakash, L., Manikandan, P., & Muthumperumal, C. (2022). Documentation of invasive alien plant species in Anaikatty hills, Coimbatore, Western Ghats. *Indian Journal of Ecology*, 49(3), 698–702. <https://doi.org/10.55362/IJE/2022/3581>

Pratt, P. F. (1965). Potassium. *Methods of soil analysis: Part 2 chemical and microbiological properties*, 9, 1022–1030.

Punia, H., Dhiman, H., Saharan, H. and Jakhar, S. (2022). Floristic Composition and Diversity in Response to Varying Degrees of Disturbance in Tropical Dry Deciduous Forests of Southern Haryana, India. *Ecology Environment & Conservation*, 28 (4): 2164–2173.

Quijas, S., Schmid, B., & Balvanera, P. (2010). Plant diversity enhances provision of ecosystem services: A new synthesis. *Basic and Applied Ecology*, 11(7), 582–593. <https://doi.org/10.1016/j.baae.2010.06.009>.

Rajasri, R., Sreevidya, E. A., & Ramachandra, T. V. (2017). Functional importance of sacred forest patches in the altered landscape of Palakkad region, Kerala, India. *Journal of Tropical Ecology*, 33(6), 379–394. <https://doi.org/10.1017/S0266467417000360>.

Rashid, I., Haq, S. M., Lembrechts, J. J., Khuroo, A. A., Pauchard, A., & Dukes, J. S. (2021). Railways redistribute plant species in mountain landscapes. *Journal of Applied Ecology*, 58(9), 1967–1980. <https://doi.org/10.1111/1365-2664.13961>

Raunkiær, C., & Stowe, E. (1936). *Recherches statistiques sur les formations végétales*. United States Forest Service, Division of Silvics.

Ray, R., Sreevidya, E. A., & Ramachandra, T. V. (2017). Functional importance of sacred forest patches in the altered landscape of Palakkad region, Kerala, India. *Journal of Tropical Ecology*, 33(6), 379–394. <https://doi.org/10.1017/S0266467417000360>

Rhoades, C. C. (1996). Single-tree influences on soil properties in agroforestry: lessons from natural forest and savanna ecosystems. *Agroforestry systems*, 35, 71–94.

Scull, P., Cardelús, C. L., Klepeis, P., Woods, C. L., Frankl, A., & Nyssen, J. (2017). The resilience of Ethiopian church forests: interpreting aerial photographs, 1938–2015. *Land Degradation & Development*, 28(2), 450–458. <https://doi.org/10.1002/lrd.2633>

Sen, U. K., & Bhakat, R. K. (2021). Quantitative evaluation of biological spectrum and phenological pattern of vegetation of a sacred grove of West Midnapore District, Eastern India. *Asian Journal of Forestry*, 5(2). <https://doi.org/10.13057/asianjfor/r050206>

Sherafu, Z., Egigu, M. C., & JM, S. (2024). Floristic Composition, Diversity, and Regeneration of Woody Plant Species of Dabal Forest in Southeastern Ethiopia: Implication for Conservation. *Scientifica*, 2024(1), 7414375. <https://doi.org/10.1155/2024/7414375>.

Simpson, E. H. (1949). Measurement of diversity. *Nature*, 163: 688.

Singh, A. K., Sisodia, A., Sisodia, V., & Padhi, M. (2019). Role of microbes in restoration ecology and ecosystem services. In *New and future developments in microbial biotechnology and bioengineering* (pp. 57–68). Elsevier. <https://doi.org/10.1016/B978-0-444-64191-5.00004-3>

Singh, S., Swami, S., Gogoi, J., Dwivedi, D. K., Turkar, G. P., Tamang, B., & Borah, S. K. (2023). Effect of Biochar-Mediated Treatments on the Improvement of Soil Acidity, Crop Performance and Soil Properties. *Ama, Agricultural Mechanization in Asia, Africa & Latin America*, 54, 13575–13603.

Tang, X., Zhao, X., Bai, Y., Tang, Z., Wang, W., Zhao, Y., ... & Zhou, G. (2018). Carbon pools in China's terrestrial ecosystems: New estimates based on an intensive field survey. *Proceedings of the National Academy of Sciences*, 115(16), 4021–4026. <https://doi.org/10.1073/pnas.1700291115>.

Taylor, D., Kent, M., & Coker, P. (1993). Vegetation description and analysis: a practical approach. *The Geographical Journal*, 159(2), 237.

Thomas, G. W. (1996). Soil pH and soil acidity. *Methods of soil analysis: part 3 chemical methods*, 5, 475–490.

Waheed, M., Haq, S. M., Arshad, F., Bussmann, R. W., Iqbal, M., Bukhari, N. A., & Hatamleh, A. A. (2022). Grasses in semi-arid lowlands—community composition and spatial dynamics with special regard to the influence of edaphic factors. *Sustainability*, 14(22), 14964. <https://doi.org/10.3390/su142214964>

Weaver, W. (1963). *The mathematical theory of communication*. University of Illinois press.

Yatar, C., Thinkampheang, S., Sungkaew, S., Wachrinrat, C., Asanok, L., Kamyo, T., ... & Marod, D. (2024). The dynamics of Deciduous Dipterocarp Forest in relation to climate variability in the Sakaerat Biosphere Reserve, Northeastern Thailand. *Biodiversitas Journal of Biological Diversity*, 25(7). <https://doi.org/10.13057/biodiv/d250730>

## Appendix

**Table 1:** Analytical characteristics of plant species encountered in Bidola SG.

**Tabela 1:** Značilnosti rastlinskih vrst zabeleženih v Bidola SG.

| S. N.         | Name of Plant species           | D             | F   | A            | A/F   | BA             | IVI        |
|---------------|---------------------------------|---------------|-----|--------------|-------|----------------|------------|
| <b>Trees</b>  |                                 |               |     |              |       |                |            |
| 1             | <i>Acacia nilotica</i>          | 5             | 10  | 2            | 0.2   | 0.158          | 7.19       |
| 2             | <i>Acacia tortilis</i>          | 432.5         | 100 | 17.3         | 0.173 | 0.845          | 89.1       |
| 3             | <i>Azadirachta indica</i>       | 5             | 10  | 2            | 0.2   | 0.025          | 4.31       |
| 4             | <i>Balenites aegyptiaca</i>     | 17.5          | 10  | 7            | 0.7   | 0.034          | 5.58       |
| 5             | <i>Dalbergia sissoo</i>         | 5             | 10  | 2            | 0.2   | 0.195          | 7.99       |
| 6             | <i>Prosopis cineraria</i>       | 132.5         | 50  | 10.6         | 0.212 | 1.796          | 67.08      |
| 7             | <i>Prosopis juliflora</i>       | 367.5         | 30  | 49           | 1.633 | 0.869          | 60.65      |
| 8             | <i>Salvadora oleoides</i>       | 130           | 40  | 13           | 0.325 | 0.361          | 32.41      |
| 9             | <i>Ziziphus jujuba</i>          | 20            | 30  | 2.667        | 0.089 | 0.212          | 16.33      |
|               | Total                           | <b>1115</b>   |     | <b>105.6</b> |       | <b>4.495</b>   | <b>300</b> |
| <b>Shrubs</b> |                                 |               |     |              |       |                |            |
| 1             | <i>Abutilon indicum</i>         | 332.5         | 60  | 22.17        | 0.369 | 0.0103         | 36.90      |
| 2             | <i>Calotropis procera</i>       | 187.5         | 60  | 12.5         | 0.208 | 0.00172        | 26.62      |
| 3             | <i>Capparis decidua</i>         | 350           | 90  | 15.56        | 0.173 | 0.49046        | 131.46     |
| 4             | <i>Capparis sepiaria</i>        | 32.5          | 20  | 6.5          | 0.325 | 0.01268        | 9.23       |
| 5             | <i>Maytenus emarginata</i>      | 82.5          | 70  | 4.714        | 0.067 | 0.00369        | 23.14      |
| 6             | <i>Parthenium hysterophorus</i> | 500           | 40  | 50           | 1.25  | 0.01043        | 42.03      |
| 7             | <i>Ziziphus nummularia</i>      | 172.5         | 60  | 11.5         | 0.192 | 0.02906        | 30.61      |
|               | Total                           | <b>1657.5</b> |     | <b>122.9</b> |       | <b>0.55833</b> | <b>300</b> |
| <b>Herbs</b>  |                                 |               |     |              |       |                |            |
| 1             | <i>Achyranthes aspera</i>       | 837.5         | 100 | 33.5         | 0.335 | 0.01478        | 20.52625   |
| 2             | <i>Alternanthera sessilis</i>   | 70            | 20  | 14           | 0.7   | 0.00025        | 1.56365    |
| 3             | <i>Alysicarpus vaginalis</i>    | 177.5         | 20  | 35.5         | 1.775 | 0.00197        | 3.35079    |
| 4             | <i>Amaranthus palmeri</i>       | 17.5          | 20  | 3.5          | 0.175 | 0.00108        | 2.03256    |
| 5             | <i>Amaranthus roxburghianus</i> | 175           | 30  | 23.33        | 0.778 | 0.00168        | 3.65783    |
| 6             | <i>Argemone maxicana</i>        | 35            | 20  | 7            | 0.35  | 0.00042        | 1.56828    |
| 7             | <i>Boerhavia diffusa</i>        | 412.5         | 90  | 18.33        | 0.204 | 0.00226        | 8.31589    |
| 8             | <i>Boerhavia erecta</i>         | 50            | 20  | 10           | 0.5   | 0.00018        | 1.43202    |
| 9             | <i>Cenchrus ciliaris</i>        | 350           | 40  | 35           | 0.875 | 0.00105        | 4.36089    |
| 10            | <i>Chenopodium album</i>        | 12.5          | 10  | 5            | 0.5   | 0.00014        | 0.70905    |
| 11            | <i>Chenopodium murale</i>       | 585           | 80  | 29.25        | 0.366 | 0.00073        | 7.18756    |
| 12            | <i>Cleome viscosa</i>           | 5             | 10  | 2            | 0.2   | 0.00014        | 0.68078    |
| 13            | <i>Commelina benghalensis</i>   | 622.5         | 90  | 27.67        | 0.307 | 0.0054         | 11.63029   |
| 14            | <i>Corchorus aestuans</i>       | 82.5          | 20  | 16.5         | 0.825 | 0.00164        | 2.72751    |
| 15            | <i>Corchorus olitorius</i>      | 65            | 30  | 8.667        | 0.289 | 0.00119        | 2.84946    |
| 16            | <i>Croton bonplandianus</i>     | 350           | 30  | 46.67        | 1.556 | 0.00146        | 4.14083    |
| 17            | <i>Cyanthillium cinereum</i>    | 277.5         | 70  | 15.86        | 0.227 | 0.00712        | 10.61259   |
| 18            | <i>Cynodon dactylon</i>         | 8160          | 100 | 326.4        | 3.264 | 0.00453        | 39.89737   |
| 19            | <i>Cyperus rotundus</i>         | 1125          | 40  | 112.5        | 2.813 | 0.00069        | 6.99343    |
| 20            | <i>Dactyloctenium aegyptium</i> | 752.5         | 50  | 60.2         | 1.204 | 0.00072        | 6.16265    |
| 21            | <i>Digera muricata</i>          | 180           | 40  | 18           | 0.45  | 0.00008        | 2.94068    |
| 22            | <i>Digitaria ciliaris</i>       | 52.5          | 10  | 21           | 2.1   | 0.00005        | 0.78755    |
| 23            | <i>Eragrostis tenella</i>       | 1697.5        | 90  | 75.44        | 0.838 | 0.00083        | 12.01151   |
| 24            | <i>Euphorbia granulata</i>      | 412.5         | 50  | 33           | 0.66  | 0.00004        | 4.33453    |

| S. N.           | Name of Plant species            | D            | F  | A             | A/F   | BA             | IVI        |
|-----------------|----------------------------------|--------------|----|---------------|-------|----------------|------------|
| 25              | <i>Euphorbia hirta</i>           | 232.5        | 30 | 31            | 1.033 | 0.00028        | 2.74984    |
| 26              | <i>Euphorbia prostata</i>        | 70           | 20 | 14            | 0.7   | 0.00093        | 2.10997    |
| 27              | <i>Evolvulus alsinoides</i>      | 105          | 20 | 21            | 1.05  | 0.00002        | 1.51082    |
| 28              | <i>Heliotropium strigosum</i>    | 102.5        | 20 | 20.5          | 1.025 | 0.00005        | 1.5255     |
| 29              | <i>Indigofera linnaei</i>        | 47.5         | 20 | 9.5           | 0.475 | 0.00015        | 1.39849    |
| 30              | <i>Launaea nudicaulis</i>        | 17.5         | 20 | 3.5           | 0.175 | 0.00005        | 1.20505    |
| 31              | <i>Mollugo nudicaulis</i>        | 12.5         | 10 | 5             | 0.5   | 0.00001        | 0.60461    |
| 32              | <i>Pedalium murex</i>            | 57.5         | 10 | 23            | 2.3   | 0.00157        | 2.02758    |
| 33              | <i>Peristrophe bicalyculata</i>  | 2985         | 70 | 170.6         | 2.437 | 0.03687        | 44.72128   |
| 34              | <i>Physalis minima</i>           | 30           | 20 | 6             | 0.3   | 0.00014        | 1.32448    |
| 35              | <i>Poa annua</i>                 | 427.5        | 50 | 34.2          | 0.684 | 0.00207        | 6.02199    |
| 36              | <i>Portulaca pilosa</i>          | 105          | 20 | 21            | 1.05  | 0.00029        | 1.72774    |
| 37              | <i>Pupalia lappacia</i>          | 712.5        | 80 | 35.63         | 0.445 | 0.01222        | 16.89938   |
| 38              | <i>Setaria viridis</i>           | 3810         | 90 | 169.3         | 1.881 | 0.00121        | 20.28098   |
| 39              | <i>Sida cordifolia</i>           | 125          | 30 | 16.67         | 0.556 | 0.00044        | 2.4731     |
| 40              | <i>Spergula arvensis</i>         | 250          | 20 | 50            | 2.5   | 0.00042        | 2.37884    |
| 41              | <i>Trianthema portulacastrum</i> | 10           | 10 | 4             | 0.4   | 0.00002        | 0.60322    |
| 42              | <i>Tribulus terrestris</i>       | 60           | 30 | 8             | 0.267 | 0.00007        | 1.93079    |
| 43              | <i>Verbena officinalis</i>       | 185          | 30 | 24.67         | 0.822 | 0.00009        | 2.41811    |
| 44              | <i>Verbesina encelioides</i>     | 267.5        | 40 | 26.75         | 0.669 | 0.00956        | 10.88685   |
| 45              | <i>Withania somnifera</i>        | 10           | 10 | 4             | 0.4   | 0.00026        | 0.79604    |
| 46              | <i>Xanthium strumarium</i>       | 312.5        | 50 | 25            | 0.5   | 0.00779        | 10.18392   |
| 47              | <i>Zaleya pentandra</i>          | 85           | 40 | 8.5           | 0.213 | 0.00153        | 3.74747    |
| <b>Total</b>    |                                  | <b>26525</b> |    | <b>1710.1</b> |       | <b>0.12447</b> | <b>300</b> |
| <b>Climbers</b> |                                  |              |    |               |       |                |            |
| 1               | <i>Cucumis callosus</i>          | 145          | 70 | 8.286         | 0.118 | 0.00101        | 137.4887   |
| 2               | <i>Momordica charantia</i>       | 55           | 40 | 5.5           | 0.138 | 0.00005        | 35.26089   |
| 3               | <i>Mukia maderspatana</i>        | 207.5        | 80 | 10.38         | 0.13  | 0.00019        | 99.35883   |
| 4               | <i>Pergularia daemia</i>         | 25           | 20 | 5             | 0.25  | 0.00018        | 27.89157   |
| <b>Total</b>    |                                  | <b>432.5</b> |    | <b>29.166</b> |       | <b>0.00143</b> | <b>300</b> |

Abbreviations:

F = Frequency, D = Density, A = Abundance, BA = Basal Area, A/F = Abundance to Frequency ratio, IVI = Importance Value Index.

**Table 2:** Analytical characteristics of plant species encountered in Makrana Johra SG.

**Tabela 2:** Značnosti rastlinských vrst zabeležených v Makrana Johra SG.

| S. N.        | Name of Plant species     | D            | F    | A             | A/F  | BA           | IVI        |
|--------------|---------------------------|--------------|------|---------------|------|--------------|------------|
| <b>Trees</b> |                           |              |      |               |      |              |            |
| 1            | <i>Acacia nilotica</i>    | 5            | 6.67 | 3             | 0.45 | 0.274        | 7.4994     |
| 2            | <i>Acacia senegal</i>     | 8.33         | 13.3 | 2.5           | 0.19 | 0.738        | 17.137     |
| 3            | <i>Acacia tortilis</i>    | 296.7        | 100  | 11.867        | 0.12 | 1.474        | 122.22     |
| 4            | <i>Anogeissus pendula</i> | 3.33         | 6.67 | 2             | 0.3  | 0.174        | 5.8668     |
| 5            | <i>Azadirachta indica</i> | 5            | 6.67 | 3             | 0.45 | 0.0223       | 4.2244     |
| 6            | <i>Pongamia pinnata</i>   | 3.33         | 6.67 | 2             | 0.3  | 0.00008      | 3.6046     |
| 7            | <i>Prosopis cineraria</i> | 3.33         | 6.67 | 2             | 0.3  | 0.265        | 7.0532     |
| 8            | <i>Salvadora oleoides</i> | 178.3        | 80   | 8.9167        | 0.11 | 4.744        | 132.39     |
| <b>Total</b> |                           | <b>503.3</b> |      | <b>35.283</b> |      | <b>7.693</b> | <b>300</b> |

| S. N.         | Name of Plant species            | D           | F    | A             | A/F     | BA           | IVI        |
|---------------|----------------------------------|-------------|------|---------------|---------|--------------|------------|
| <b>Shrubs</b> |                                  |             |      |               |         |              |            |
| 1             | <i>Abutilon indicum</i>          | 255         | 80   | 12.75         | 0.16    | 0.005        | 42.82      |
| 2             | <i>Calotropis procera</i>        | 103.3       | 73.3 | 5.6364        | 0.08    | 0.005        | 27.328     |
| 3             | <i>Capparis decidua</i>          | 155         | 66.7 | 9.3           | 0.14    | 1.086        | 105.76     |
| 4             | <i>Capparis sepiaria</i>         | 10          | 6.67 | 6             | 0.9     | 0.128        | 11.453     |
| 5             | <i>Grewia tenax</i>              | 3.333       | 6.67 | 2             | 0.3     | 0.007        | 2.3968     |
| 6             | <i>Gymnosporia senegalensis</i>  | 23.33       | 26.7 | 3.5           | 0.13    | 0.119        | 16.814     |
| 7             | <i>Maytenus emarginata</i>       | 71.67       | 53.3 | 5.375         | 0.1     | 0.011        | 20.057     |
| 8             | <i>Opuntia dillenii</i>          | 15          | 6.67 | 9             | 1.35    | 0.048        | 6.2927     |
| 9             | <i>Parthenium hysterophorus</i>  | 408.3       | 46.7 | 35            | 0.75    | 0.024        | 50.285     |
| 10            | <i>Phyllanthus reticulatus</i>   | 20          | 20   | 4             | 0.2     | 0.00074      | 6.651      |
| 11            | <i>Solanum incanum</i>           | 11.67       | 20   | 2.3333        | 0.12    | 0.00057      | 5.8734     |
| 12            | <i>Ziziphus nummularia</i>       | 11.67       | 13.3 | 3.5           | 0.26    | 0.00032      | 4.2688     |
|               | Total                            | <b>1088</b> |      | <b>98.395</b> |         | <b>1.436</b> | <b>300</b> |
| <b>Herbs</b>  |                                  |             |      |               |         |              |            |
| 1             | <i>Achyranthes aspera</i>        | 518.3       | 86.7 | 23.923        | 0.27593 | 0.0043       | 11.09814   |
| 2             | <i>Aerva javanica</i>            | 68.33       | 20   | 13.667        | 0.68335 | 0.0019       | 2.89221    |
| 3             | <i>Alternanthera sessilis</i>    | 71.67       | 13.3 | 21.5          | 1.61654 | 0.0002       | 1.38994    |
| 4             | <i>Amaranthus spinosus</i>       | 51.67       | 26.7 | 7.75          | 0.29026 | 0.0043       | 4.78379    |
| 5             | <i>Boerhavia diffusa</i>         | 260         | 80   | 13            | 0.16250 | 0.0018       | 8.04561    |
| 6             | <i>Chenopodium album</i>         | 11.67       | 6.67 | 7             | 1.04948 | 0.0002       | 0.67410    |
| 7             | <i>Cleome viscosa</i>            | 3.333       | 6.67 | 2             | 0.29985 | 0.0001       | 0.54906    |
| 8             | <i>Commelina benghalensis</i>    | 656.7       | 80   | 32.833        | 0.41041 | 0.0050       | 11.64586   |
| 9             | <i>Corchorus olitorius</i>       | 356.7       | 73.3 | 19.455        | 0.26542 | 0.0050       | 9.88787    |
| 10            | <i>Croton bonplandianus</i>      | 38.33       | 13.3 | 11.5          | 0.86466 | 0.0003       | 1.30901    |
| 11            | <i>Cynodon dactylon</i>          | 9065        | 100  | 362.6         | 3.62600 | 0.0055       | 47.59270   |
| 12            | <i>Cyperus rotundus</i>          | 165         | 26.7 | 24.75         | 0.92697 | 0.0001       | 2.71134    |
| 13            | <i>Dactyloctenium aegyptium</i>  | 281.7       | 26.7 | 42.25         | 1.58240 | 0.0011       | 3.79964    |
| 14            | <i>Digera muricata</i>           | 30          | 13.3 | 9             | 0.67669 | 0.0014       | 1.94341    |
| 15            | <i>Digitaria ciliaris</i>        | 256.7       | 33.3 | 30.8          | 0.92492 | 0.0003       | 3.69364    |
| 16            | <i>Eragrostis tenella</i>        | 1123        | 53.3 | 84.25         | 1.58068 | 0.0002       | 8.61657    |
| 17            | <i>Erigeron bonariensis</i>      | 20          | 20   | 4             | 0.20000 | 0.0001       | 1.60290    |
| 18            | <i>Euphorbia granulata</i>       | 105         | 20   | 21            | 1.05000 | 0.0000       | 1.91009    |
| 19            | <i>Euphorbia hirta</i>           | 48.33       | 13.3 | 14.5          | 1.09023 | 0.0002       | 1.27070    |
| 20            | <i>Evolvulus alsinoides</i>      | 11.67       | 6.67 | 7             | 1.04948 | 0.0002       | 0.68625    |
| 21            | <i>Evolvulus nummularius</i>     | 35          | 6.67 | 21            | 3.14843 | 0.0000       | 0.64220    |
| 22            | <i>Glinus lotoides</i>           | 541.7       | 20   | 108.33        | 5.41650 | 0.0016       | 4.65364    |
| 23            | <i>Heliotropium strigosum</i>    | 55          | 13.3 | 16.5          | 1.24060 | 0.0001       | 1.26424    |
| 24            | <i>Indigofera linnaei</i>        | 50          | 26.7 | 7.5           | 0.28090 | 0.0001       | 2.24357    |
| 25            | <i>Mollugo nudicaulis</i>        | 63.33       | 33.3 | 7.6           | 0.22823 | 0.0003       | 2.88887    |
| 26            | <i>Pedalium murex</i>            | 6.667       | 13.3 | 2             | 0.15038 | 0.0003       | 1.19237    |
| 27            | <i>Peristrophe bicalyculata</i>  | 4153        | 100  | 166.13        | 1.66130 | 0.1165       | 95.08587   |
| 28            | <i>Perotis indica</i>            | 448.3       | 33.3 | 53.8          | 1.61562 | 0.0002       | 4.40616    |
| 29            | <i>Phyllanthus fraternus</i>     | 63.33       | 46.7 | 5.4286        | 0.11624 | 0.0003       | 3.86710    |
| 30            | <i>Poa annua</i>                 | 333.3       | 53.3 | 25            | 0.46904 | 0.0016       | 6.29142    |
| 31            | <i>Portulaca pilosa</i>          | 56.67       | 20   | 11.333        | 0.56665 | 0.0002       | 1.79981    |
| 32            | <i>Pupalia lappacia</i>          | 433.3       | 80   | 21.667        | 0.27084 | 0.0018       | 8.78697    |
| 33            | <i>Setaria viridis</i>           | 5037        | 80   | 251.83        | 3.14788 | 0.0026       | 27.96850   |
| 34            | <i>Sida cordifolia</i>           | 10          | 13.3 | 3             | 0.22556 | 0.0001       | 1.06030    |
| 35            | <i>Trianthema portulacastrum</i> | 6.667       | 6.67 | 4             | 0.59970 | 0.00002      | 0.53182    |
| 36            | <i>Tribulus terrestris</i>       | 105         | 40   | 10.5          | 0.26250 | 0.0004       | 3.60216    |

| S. N. | Name of Plant species        | D              | F    | A               | A/F     | BA            | IVI        |
|-------|------------------------------|----------------|------|-----------------|---------|---------------|------------|
| 37    | <i>Triumfetta rhomboidea</i> | 6.667          | 13.3 | 2               | 0.15038 | 0.0001        | 1.07693    |
| 38    | <i>Verbesina encelioides</i> | 11.67          | 6.67 | 7               | 1.04948 | 0.0022        | 1.85880    |
| 39    | <i>Xanthium strumarium</i>   | 18.33          | 13.3 | 5.5             | 0.41353 | 0.0042        | 3.60920    |
| 40    | <i>Zaleya pentandra</i>      | 6.667          | 13.3 | 2               | 0.15038 | 0.0001        | 1.06709    |
|       | Total                        | <b>24584.7</b> |      | <b>1484.897</b> |         | <b>0.1646</b> | <b>300</b> |
|       | <b>Climbers</b>              |                |      |                 |         |               |            |
| 1     | <i>Citrullus colocynthis</i> | 6.667          | 13.3 | 2               | 0.15038 | 0.0001        | 2.150      |
| 2     | <i>Coccinia grandis</i>      | 76.67          | 40   | 7.6667          | 0.19167 | 0.0005        | 7.859      |
| 3     | <i>Cucumis callosus</i>      | 191.7          | 93.3 | 8.2143          | 0.08804 | 0.0068        | 8.309      |
| 4     | <i>Ipomoea pes-tigridis</i>  | 165            | 46.7 | 14.143          | 0.30285 | 0.0008        | 14.447     |
| 5     | <i>Ipomoea triloba</i>       | 3.333          | 6.67 | 2               | 0.29985 | 0.0000        | 2.300      |
| 6     | <i>Mukia maderaspatana</i>   | 95             | 66.7 | 5.7             | 0.08546 | 0.0002        | 5.786      |
| 7     | <i>Pergularia daemia</i>     | 53.33          | 33.3 | 6.4             | 0.19219 | 0.0003        | 6.593      |
|       | Total                        | <b>591.7</b>   |      | <b>46.124</b>   |         | <b>0.0088</b> | <b>300</b> |

Abbreviations:

F = Frequency, D = Density, A = Abundance, BA = Basal Area, A/F = Abundance to Frequency ratio, IVI = Importance Value Index.

**Table 3:** Analytical characteristics of plant species encountered in Sultanpur SG.

**Tabela 3:** Značilnosti rastlinských vrst zabeležených v Sultanpur SG.

| S. N. | Name of Plant species           | D            | F      | A           | A/F   | BA             | IVI        |
|-------|---------------------------------|--------------|--------|-------------|-------|----------------|------------|
|       | <b>Trees</b>                    |              |        |             |       |                |            |
| 1     | <i>Acacia nilotica</i>          | 120          | 80     | 6           | 0.075 | 1.52866        | 50.57      |
| 2     | <i>Acacia tortilis</i>          | 185          | 73.333 | 10.1        | 0.138 | 0.30968        | 54.898     |
| 3     | <i>Azadirachta indica</i>       | 3.33         | 6.6667 | 2           | 0.3   | 0.00006        | 2.3202     |
| 4     | <i>Ficus beghalensis</i>        | 3.33         | 6.6667 | 2           | 0.3   | 0.76699        | 6.199      |
| 5     | <i>Ficus religiosa</i>          | 3.33         | 13.333 | 1           | 0.075 | 0.64173        | 7.2604     |
| 6     | <i>Melia azedarach</i>          | 6.67         | 13.333 | 2           | 0.15  | 0.0104         | 4.6925     |
| 7     | <i>Mimosa hamata</i>            | 11.67        | 6.6667 | 7           | 1.05  | 0.01338        | 3.9501     |
| 8     | <i>Morus alba</i>               | 10           | 33.333 | 1.2         | 0.036 | 0.0005         | 10.352     |
| 9     | <i>Prosopis cineraria</i>       | 55           | 33.333 | 6.6         | 0.198 | 0.44841        | 21.055     |
| 10    | <i>Prosopis juliflora</i>       | 100          | 60     | 6.67        | 0.111 | 0.20382        | 35.035     |
| 11    | <i>Salvadora oleoides</i>       | 28.33        | 53.333 | 2.13        | 0.04  | 15.8416        | 98.991     |
| 12    | <i>Syzygium cumini</i>          | 3.33         | 6.6667 | 2           | 0.3   | 0.00679        | 2.3543     |
| 13    | <i>Ziziphus jujuba</i>          | 3.33         | 6.6667 | 2           | 0.3   | 0.00042        | 2.3221     |
|       | Total                           | <b>533.3</b> |        | <b>50.7</b> |       | <b>19.7725</b> | <b>300</b> |
|       | <b>Shrubs</b>                   |              |        |             |       |                |            |
| 1     | <i>Abutilon indicum</i>         | 105          | 46.667 | 9           | 0.193 | 0.01554        | 34.855     |
| 2     | <i>Calotropis procera</i>       | 121.7        | 46.667 | 10.4        | 0.223 | 0.00139        | 25.132     |
| 3     | <i>Capparis decidua</i>         | 113.3        | 66.667 | 6.8         | 0.102 | 0.07721        | 89.714     |
| 4     | <i>Capparis sepiaria</i>        | 30           | 26.667 | 4.5         | 0.169 | 0.01074        | 19.106     |
| 5     | <i>Maytenus emarginata</i>      | 10           | 6.6667 | 6           | 0.9   | 0.00049        | 3.2597     |
| 6     | <i>Parthenium hysterophorus</i> | 823.3        | 66.667 | 49.4        | 0.741 | 0.01693        | 96.392     |
| 7     | <i>Phyllanthus reticulatus</i>  | 73.33        | 13.333 | 22          | 1.65  | 0.00218        | 11.471     |
| 8     | <i>Ziziphus nummularia</i>      | 51.67        | 40     | 5.17        | 0.129 | 0.0044         | 20.069     |
|       | Total                           | <b>1328</b>  |        | <b>113</b>  |       | <b>0.129</b>   | <b>300</b> |
|       | <b>Herbs</b>                    |              |        |             |       |                |            |
| 1     | <i>Achyranthes aspera</i>       | 455          | 73.333 | 24.8        | 0.338 | 0.0326         | 26.339     |
| 2     | <i>Aerva javanica</i>           | 105          | 26.667 | 15.8        | 0.591 | 0.00085        | 3.1068     |
| 3     | <i>Alternanthera sessilis</i>   | 210          | 13.333 | 63          | 4.725 | 0.00085        | 2.4833     |

| S. N. | Name of Plant species              | D      | F      | A    | A/F   | BA      | IVI    |
|-------|------------------------------------|--------|--------|------|-------|---------|--------|
| 4     | <i>Amaranthus viridis</i>          | 15     | 13.333 | 4.5  | 0.338 | 0.00003 | 1.164  |
| 5     | <i>Anagallis arvensis</i>          | 96.67  | 13.333 | 29   | 2.175 | 0.00005 | 1.5344 |
| 6     | <i>Argemone maxicana</i>           | 125    | 40     | 12.5 | 0.313 | 0.00375 | 5.9076 |
| 7     | <i>Arnebia hispidissima</i>        | 3.333  | 6.6667 | 2    | 0.3   | 0.00031 | 0.7283 |
| 8     | <i>Boerhavia diffusa</i>           | 236.7  | 20     | 47.3 | 2.367 | 0.00214 | 3.8685 |
| 9     | <i>Cenchrus ciliaris</i>           | 166.7  | 20     | 33.3 | 1.667 | 0.00026 | 2.5006 |
| 10    | <i>Centaurea sp</i>                | 248.3  | 40     | 24.8 | 0.621 | 0.0006  | 4.6741 |
| 11    | <i>Chenopodium album</i>           | 195    | 20     | 39   | 1.95  | 0.0003  | 2.6476 |
| 12    | <i>Chenopodium murale</i>          | 381.7  | 40     | 38.2 | 0.954 | 0.00394 | 7.1473 |
| 13    | <i>Convolvulus arvensis</i>        | 363.3  | 53.333 | 27.3 | 0.511 | 0.00489 | 8.6822 |
| 14    | <i>Coronopus didymus</i>           | 1548   | 33.333 | 186  | 5.574 | 0.02425 | 23.201 |
| 15    | <i>Croton bonplandianus</i>        | 380    | 66.667 | 22.8 | 0.342 | 0.00503 | 9.9146 |
| 16    | <i>Cyanthillium cinereum</i>       | 111.7  | 40     | 11.2 | 0.279 | 0.00029 | 3.8966 |
| 17    | <i>Cynodon dactylon</i>            | 4088   | 100    | 164  | 1.635 | 0.00209 | 27.301 |
| 18    | <i>Cyperus rotundus</i>            | 483.3  | 26.667 | 72.5 | 2.719 | 0.00098 | 4.8464 |
| 19    | <i>Datura innoxia</i>              | 61.67  | 13.333 | 18.5 | 1.388 | 0.00104 | 1.938  |
| 20    | <i>Eclipta alba</i>                | 91.67  | 6.6667 | 55   | 8.25  | 0.00033 | 1.1303 |
| 21    | <i>Erigeron canadensis</i>         | 188.3  | 20     | 37.7 | 1.883 | 0.00128 | 3.1721 |
| 22    | <i>Euphorbia dracunculoides</i>    | 18.33  | 6.6667 | 11   | 1.65  | 0.00015 | 0.7079 |
| 23    | <i>Euphorbia granulata</i>         | 518.3  | 60     | 34.6 | 0.576 | 0.00086 | 7.6311 |
| 24    | <i>Euphorbia prostrata</i>         | 148.3  | 13.333 | 44.5 | 3.338 | 0.00029 | 1.8965 |
| 25    | <i>Evolvulus nummularius</i>       | 308.3  | 6.6667 | 185  | 27.75 | 0.00006 | 1.9332 |
| 26    | <i>Fagonia indica</i>              | 6.667  | 6.6667 | 4    | 0.6   | 0.00009 | 0.6205 |
| 27    | <i>Glinus lotoides</i>             | 1695   | 46.667 | 145  | 3.113 | 0.01602 | 20.288 |
| 28    | <i>Gnaphalium purpureum</i>        | 158.3  | 40     | 15.8 | 0.396 | 0.00107 | 4.5426 |
| 29    | <i>Heliotropium strigosum</i>      | 113.3  | 13.333 | 34   | 2.55  | 0.00047 | 1.8482 |
| 30    | <i>Launaea nudicaulis</i>          | 121.7  | 46.667 | 10.4 | 0.223 | 0.00141 | 5.1151 |
| 31    | <i>Malvastrum coromandelianum</i>  | 141.7  | 6.6667 | 85   | 12.75 | 0.00092 | 1.6861 |
| 32    | <i>Orobanche aegyptiaca</i>        | 6.667  | 6.6667 | 4    | 0.6   | 0.00008 | 0.6173 |
| 33    | <i>Oxalis corniculata</i>          | 168.3  | 6.6667 | 101  | 15.15 | 0.00101 | 1.8513 |
| 34    | <i>Paspalidium dilatatum</i>       | 65     | 6.6667 | 39   | 5.85  | 0.00015 | 0.9104 |
| 35    | <i>Polygonum aviculare</i>         | 4282   | 40     | 428  | 10.7  | 0.00915 | 27.269 |
| 36    | <i>Pupalia lappacea</i>            | 6.667  | 6.6667 | 4    | 0.6   | 0.0001  | 0.6286 |
| 37    | <i>Ranunculus sceleratus</i>       | 3480   | 33.333 | 418  | 12.53 | 0.02525 | 32.274 |
| 38    | <i>Rumex dentatus</i>              | 258.3  | 20     | 51.7 | 2.583 | 0.00224 | 4.0205 |
| 39    | <i>Sida cordifolia</i>             | 25     | 6.6667 | 15   | 2.25  | 0.00094 | 1.1832 |
| 40    | <i>Sisymbrium irio</i>             | 651.7  | 53.333 | 48.9 | 0.916 | 0.00048 | 7.467  |
| 41    | <i>Solanum nigrum</i>              | 3.333  | 6.6667 | 2    | 0.3   | 0.00046 | 0.8171 |
| 42    | <i>Solanum virginianum</i>         | 88.33  | 20     | 17.7 | 0.883 | 0.00828 | 6.6828 |
| 43    | <i>Sonchus oleraceus</i>           | 3.333  | 6.6667 | 2    | 0.3   | 0.00006 | 0.5908 |
| 44    | <i>Spergula arvensis</i>           | 233.3  | 26.667 | 35   | 1.313 | 0.00022 | 3.313  |
| 45    | <i>Veronica agagallis-aquatica</i> | 378.3  | 6.6667 | 227  | 34.05 | 0.0026  | 3.675  |
| 46    | <i>Withania somnifera</i>          | 85     | 20     | 17   | 0.85  | 0.01593 | 10.979 |
| 47    | <i>Zaleya pentandra</i>            | 176.7  | 33.333 | 21.2 | 0.636 | 0.00317 | 5.2682 |
|       | Total                              | 22697  |        | 2929 |       | 0.17731 | 300    |
|       | <b>Climbers</b>                    |        |        |      |       |         |        |
| 1     | <i>Citrullus colocynthis</i>       | 8.333  | 6.6667 | 5    | 0.75  | 0.00005 | 90.886 |
| 2     | <i>Momordica dioica</i>            | 15     | 13.333 | 4.5  | 0.338 | 0.00019 | 209.45 |
|       | Total                              | 23.333 |        | 9.5  |       | 0.00024 | 300    |

Abbreviations:

F = Frequency, D = Density, A = Abundance, BA = Basal Area, A/F = Abundance to Frequency ratio, IVI = Importance Value Index.

**Table 4:** Analytical characteristics of plant species encountered in Dhingsara SG.  
**Tabela 4:** Značilnosti rastlinských vrst zabeležených v Dhingsara SG.

| S. N.         | Name of Plant species           | D             | F     | A            | A/F  | BA             | IVI        |
|---------------|---------------------------------|---------------|-------|--------------|------|----------------|------------|
| <b>Trees</b>  |                                 |               |       |              |      |                |            |
| 1             | <i>Ailanthus excelsa</i>        | 11.667        | 13.33 | 3.5          | 0.26 | 0.703          | 10.735     |
| 2             | <i>Acacia leucophloea</i>       | 10            | 6.667 | 6            | 0.9  | 0.686          | 7.9981     |
| 3             | <i>Acacia nilotica</i>          | 21.667        | 46.67 | 1.857        | 0.04 | 0.748          | 24.354     |
| 4             | <i>Acacia tortilis</i>          | 58.333        | 53.33 | 4.375        | 0.08 | 1.875          | 38.222     |
| 5             | <i>Azadirachta indica</i>       | 6.6667        | 20    | 1.333        | 0.07 | 0.599          | 11.937     |
| 6             | <i>Casuarina equisetifolia</i>  | 3.3333        | 6.667 | 2            | 0.3  | 0.357          | 5.1201     |
| 7             | <i>Dalbergia sissoo</i>         | 3.3333        | 6.667 | 2            | 0.3  | 0.363          | 5.1599     |
| 8             | <i>Ficus religiosa</i>          | 6.6667        | 13.33 | 2            | 0.15 | 1.802          | 17.254     |
| 9             | <i>Prosopis cineraria</i>       | 3.3333        | 13.33 | 1            | 0.08 | 0.25           | 6.8664     |
| 10            | <i>Prosopis juliflora</i>       | 743.33        | 60    | 49.56        | 0.83 | 2.891          | 124.94     |
| 11            | <i>Salvadora oleoides</i>       | 13.333        | 33.33 | 1.6          | 0.05 | 5.226          | 47.409     |
|               | Total                           | <b>881.67</b> |       | <b>75.22</b> |      | <b>15.507</b>  | <b>300</b> |
| <b>Shrubs</b> |                                 |               |       |              |      |                |            |
| 1             | <i>Abutilon indicum</i>         | 61.667        | 40    | 6.167        | 0.15 | 0.00359        | 32.573     |
| 2             | <i>Calotropis procera</i>       | 6.6667        | 13.33 | 2            | 0.15 | 0.00089        | 8.0534     |
| 3             | <i>Capparis decidua</i>         | 118.33        | 60    | 7.889        | 0.13 | 0.24119        | 135.65     |
| 4             | <i>Grewia tenax</i>             | 3.3333        | 6.667 | 2            | 0.3  | 0.00767        | 6.5329     |
| 5             | <i>Maytenus emarginata</i>      | 21.667        | 20    | 4.333        | 0.22 | 0.00138        | 14.363     |
| 6             | <i>Opuntia dillenii</i>         | 23.333        | 6.667 | 14           | 2.1  | 0.01189        | 11.88      |
| 7             | <i>Parthenium hysterophorus</i> | 248.33        | 26.67 | 37.25        | 1.4  | 0.01951        | 67.891     |
| 8             | <i>Phyllanthus reticulatus</i>  | 28.333        | 26.67 | 4.25         | 0.16 | 0.00009        | 18.436     |
| 9             | <i>Ziziphus nummularia</i>      | 3.3333        | 6.667 | 2            | 0.3  | 0.00215        | 4.6186     |
|               | Total                           | <b>515</b>    |       | <b>79.89</b> |      | <b>0.28836</b> | <b>300</b> |
| <b>Herbs</b>  |                                 |               |       |              |      |                |            |
| 1             | <i>Achyranthes aspera</i>       | 548.33        | 73.33 | 29.91        | 0.41 | 0.00256        | 11.194     |
| 2             | <i>Aerva javanica</i>           | 46.667        | 33.33 | 5.6          | 0.17 | 0.00317        | 5.5104     |
| 3             | <i>Alternanthera pungens</i>    | 5             | 6.667 | 3            | 0.45 | 0.00007        | 0.6483     |
| 4             | <i>Alternanthera sessilis</i>   | 41.667        | 6.667 | 25           | 3.75 | 0.00024        | 0.9805     |
| 5             | <i>Anisomeles indica</i>        | 16.667        | 13.33 | 5            | 0.38 | 0.00026        | 1.4229     |
| 6             | <i>Argemone maxicana</i>        | 5             | 6.667 | 3            | 0.45 | 0.00021        | 0.7525     |
| 7             | <i>Cenchrus biflorus</i>        | 118.33        | 26.67 | 17.75        | 0.67 | 0.00114        | 3.7877     |
| 8             | <i>Cenchrus ciliaris</i>        | 41.667        | 6.667 | 25           | 3.75 | 0.00006        | 0.8407     |
| 9             | <i>Chenopodium album</i>        | 75            | 33.33 | 9            | 0.27 | 0.00022        | 3.4147     |
| 10            | <i>Chenopodium murale</i>       | 60            | 13.33 | 18           | 1.35 | 0.00005        | 1.5024     |
| 11            | <i>Commelina benghalensis</i>   | 435           | 33.33 | 52.2         | 1.57 | 0.01063        | 13.312     |
| 12            | <i>Convolvulus prostratus</i>   | 16.667        | 13.33 | 5            | 0.38 | 0.00003        | 1.2536     |
| 13            | <i>Corchorus aestuans</i>       | 15            | 13.33 | 4.5          | 0.34 | 0.00012        | 1.3111     |
| 14            | <i>Croton bonplandianus</i>     | 601.67        | 73.33 | 32.82        | 0.45 | 0.01054        | 17.568     |
| 15            | <i>Cynodon dactylon</i>         | 5651.7        | 100   | 226.1        | 2.26 | 0.00321        | 41.852     |
| 16            | <i>Cyperus rotundus</i>         | 88.333        | 13.33 | 26.5         | 1.99 | 0.00043        | 1.9458     |
| 17            | <i>Dactyloctenium aegyptium</i> | 1153.3        | 86.67 | 53.23        | 0.61 | 0.00419        | 16.882     |
| 18            | <i>Digera muricata</i>          | 523.33        | 80    | 26.17        | 0.33 | 0.00119        | 10.584     |
| 19            | <i>Digitaria ciliaris</i>       | 465           | 53.33 | 34.88        | 0.65 | 0.00053        | 7.4898     |
| 20            | <i>Echinochloa crus-galli</i>   | 251.67        | 40    | 25.17        | 0.63 | 0.00705        | 10.158     |
| 21            | <i>Eragrostis tenella</i>       | 731.67        | 53.33 | 54.88        | 1.03 | 0.0003         | 8.7709     |
| 22            | <i>Erigeron bonariensis</i>     | 18.333        | 6.667 | 11           | 1.65 | 0.00007        | 0.7235     |

| S. N. | Name of Plant species            | D            | F     | A           | A/F  | BA             | IVI        |
|-------|----------------------------------|--------------|-------|-------------|------|----------------|------------|
| 23    | <i>Euphorbia granualata</i>      | 240          | 26.67 | 36          | 1.35 | 0.00002        | 3.6018     |
| 24    | <i>Heliotropium strigosum</i>    | 23.333       | 13.33 | 7           | 0.53 | 0.00013        | 1.3665     |
| 25    | <i>Indigofera linnaei</i>        | 16.667       | 6.667 | 10          | 1.5  | 0.00008        | 0.7168     |
| 26    | <i>Oxalis corniculata</i>        | 38.333       | 6.667 | 23          | 3.45 | 0.00001        | 0.7808     |
| 27    | <i>Paspalidium flavidum</i>      | 21.667       | 6.667 | 13          | 1.95 | 0.00003        | 0.7065     |
| 28    | <i>Peristrophe bicalyculata</i>  | 6293.3       | 86.67 | 290.5       | 3.35 | 0.07328        | 97.599     |
| 29    | <i>Physalis minima</i>           | 46.667       | 20    | 9.333       | 0.47 | 0.00253        | 3.8854     |
| 30    | <i>Poa annua</i>                 | 16.667       | 6.667 | 10          | 1.5  | 0.0001         | 0.7331     |
| 31    | <i>Portulaca pilosa</i>          | 5            | 6.667 | 3           | 0.45 | 0.00001        | 0.6049     |
| 32    | <i>Pupalia lappacea</i>          | 190          | 40    | 19          | 0.48 | 0.00108        | 5.271      |
| 33    | <i>Setaria viridis</i>           | 130          | 20    | 26          | 1.3  | 0.00009        | 2.4867     |
| 34    | <i>Sida cordifolia</i>           | 196.67       | 46.67 | 16.86       | 0.36 | 0.00434        | 8.3613     |
| 35    | <i>Solanum xanthocarpum</i>      | 36.667       | 13.33 | 11          | 0.83 | 0.00131        | 2.3375     |
| 36    | <i>Tephrosia purpurea</i>        | 68.333       | 20    | 13.67       | 0.68 | 0.00018        | 2.2165     |
| 37    | <i>Trianthema portulacastrum</i> | 15           | 20    | 3           | 0.15 | 0.00022        | 1.9576     |
| 38    | <i>Triumfetta rhomboidea</i>     | 31.667       | 20    | 6.333       | 0.32 | 0.00075        | 2.4473     |
| 39    | <i>Verbesina encelioides</i>     | 11.667       | 6.667 | 7           | 1.05 | 0.00077        | 1.22       |
| 40    | <i>Xanthium strumarium</i>       | 8.3333       | 20    | 1.667       | 0.08 | 0.00007        | 1.8015     |
|       | Total                            | <b>18300</b> |       | <b>1200</b> |      | <b>0.13128</b> | <b>300</b> |
|       | <b>Climbers</b>                  |              |       |             |      |                |            |
| 1     | <i>Citrullus colocynthis</i>     | 10           | 13.33 | 3           | 0.23 | 0.00044        | 44.47      |
| 2     | <i>Cucumis callosus</i>          | 223.33       | 93.33 | 9.571       | 0.1  | 0.00064        | 175.72     |
| 3     | <i>Ipomoea pes-tigridis</i>      | 26.667       | 20    | 5.333       | 0.27 | 0.00012        | 29.301     |
| 4     | <i>Merremia aegyptia</i>         | 8.3333       | 13.33 | 2.5         | 0.19 | 0.00006        | 15.207     |
| 5     | <i>Momordica diocia</i>          | 13.333       | 6.667 | 8           | 1.2  | 0.00003        | 10.231     |
| 6     | <i>Mukia maderspatana</i>        | 23.333       | 26.67 | 3.5         | 0.13 | 0.00003        | 25.075     |
|       | Total                            | <b>305</b>   |       | <b>31.9</b> |      | <b>0.00132</b> | <b>300</b> |

Abbreviations:

F = Frequency, D = Density, A = Abundance, BA = Basal Area, A/F = Abundance to Frequency ratio, IVI = Importance Value Index.