Although this paper deals principally with One, considering the conclusions it draws, it will by no means be restricted to One.1 No matter how primarily it focuses on showing that the theme One in Lacanian thought is confined to one-sidedness, the crucial consequences of Lacan’s leaving this aspect ‘incomplete’ will be highlighted. In brief, the following arguments will be addressed throughout the paper:

1. Lacan’s understanding of One is one-sided, and it elaborates the reality of One from one aspect only; thus, the incomplete aspects of this reality should also be elucidated.
2. Comprehending the aspect that has been left incomplete is possible through a representation of it, but one that does not involve the concept of One.
3. One such representation opens up varied opportunities to think.
4. In addition, the representation’s significance is that it qualifies as a representation that explains the disjunction – as well as ‘one’ness – in language and thought.

The above-mentioned arguments will be developed in three sections. In the first section, Lacan’s reflection on One will be dealt with in a detailed way. The second section traces the consequences of Lacan’s thought – as described in the first section. The third section presents our position and theses based thereon.

1 Indeed for quite some time – that is, since I started to contemplate Two – I have definitely wished for Two to appear in the title of this article. However, whenever I set myself to write about Two, I was inclined to have ‘One’ in the title, thereby clearly feeling the need to discuss One at some length.

* Ankara University, Philosophy Department.
I. Lacan and One

Imagine that you are a primary school pupil, and you are just learning to count. You have started to identify objects quite recently, and your teacher is trying to teach you to count using these objects. Take a second and try to imagine what your teacher might be doing in this situation. We can assume that the teacher, for this purpose, points at an object – probably something in the immediate classroom environment, such as a table, chair, pencil, or eraser – and says to you, “one desk, one chair,...” or does this by putting the symbol ‘|’ on the black board. We can then assume that the teacher points at the desks (or chairs, etc.) in a row, calling each one of them: “two desks, two chairs,...” and turns again to the blackboard to make another ‘|’ symbol. Thereupon, she points at all the ‘|’s on the board and writes or says “two”. It is not difficult to imagine that the teacher would keep doing this to teach you to count to, say, ten.

To understand One, Lacan gives quite a similar example. Let us focus on this scenario: When contemplating One and – in general, identification – what is important for Lacan in this example is that ‘|’, which shows ‘1 desk’, ‘1 chair’, should be understood. More importantly, the moment at which such a symbol originates or emerges should be focused on (Lacan, 1961–1962: 6 December 1961). Thus, Lacan’s intention is to show the relationship between the rigor (la rigueur) of the sign and 1 (Lacan, 1961–1962: 29 November 1961). At this point, the term ‘la rigueur’ is used on purpose because this term draws attention to the fact that when we have a closer look at the sequence 1, 2, 3, 4, ...7 – so easy for us at first sight – we realize that it has, in fact, a porous structure. There is a tightly woven structure, and its porosity had always been there well before sign ‘|’ was positioned. In other words, if we were to review the process in slow-motion mode, we would be able to perceive that, when counting, “two and three do not come rather quickly” (Lacan, 1961–1962: 7 March 1962). This statement signals that a counting process, started well before the counting we do daily and which entails an ordinary counting act, has readily been in play. We need to go back to our teacher and her or his operation on the blackboard to further elaborate on this. Lacan, at this very point, scrutinized the emergence of the mark ‘|’ to use a concept borrowed from Freud – This concept is called einziger Zug, i.e. trait unique and Lacan perfectly describes the unique feature of the sign.
Trait Unique (einziger Zug) and Unary Trait (trait unaire)
Lacan indicates that this term, coined by Freud, is not a new term: in set theory in the field of mathematics, *unaire* is used in place of *einziger/unique* and serves the same purpose (Lacan, 1961–1962: 6 December 1961): to investigate the trait that creates the identification, or the oneness, of the sign ‘|’ as a significant; that is, to study what was mentioned above as *tight*. The unary trait will help perceive not only the emergence of the sign ‘|’ as a signifier, but also the counting ‘process’ of the unary trait, which is the foundation of any signifier – and which constitutes the essence of the signifier (Lacan, 1961–1962: 6 December 1961) according to Lacan. At the same time, the *process* of the unary trait, “brings its effect to bear on the most radical characters of what is called Thinking” (Lacan, 1961–1962: 7 March 1962).

To return to our case, it can be said that what arises before us in understanding the emergence of sign ‘|’ is, above anything else, the unity, or one-ness of the sign. However, how do we make this decision? Or, stated differently, where does this originate? It is not a simple question; to be able to explain how the unary trait of the symbol has become possible, we need to imagine another scenario. The scenario is about the hunting experience of a man living in prehistoric times.

Here Lacan asks us to imagine the primitive hunter making a stroke on an animal rib-bone for each animal he has hunted. The primitive hunter hunts, and he makes one stroke for every hunting experience of his. He wants to remember his next hunting experience by making another stroke. In a sense, he achieves a reproduction of his adventures.

Examining the case, we have two options: The first is the analysis of the appearance of the first (and the following) strokes. The second, so closely related to the first that they almost overlap, is analyzed simultaneously: This is about counting as these strokes appear. That is, this entails elaborating on what kind of a counting process the primitive hunter carries out.

Let us take a closer look at the first circumstance in the primitive hunter scenario. Lacan first explains the unary trait that exists in the emergence of the stroke (and in the counting process that naturally occurs) by its qualitative difference.
He wants to clarify what the possibility of a gap – that is, the space between the first stroke and the next – in fact, means. He maintains:

What I mean, on the contrary, is that here we see arising something which I am not saying is the first appearance, but in any case a certain appearance of something which you see is altogether distinguished from what can be designated as a qualitative difference: Each one of these traits is not at all identical to its neighbor, but it is not because they are different that they function as different, but because the signifying difference is distinct from anything that refers to qualitative difference (Lacan, 1961–1962: 6 December 1961)

Lacan first focuses on the qualitative difference of each appearance before he understands how the first appearance occurred. And it is in this context that he discusses the unicity of the unary trait, which forms the basis of the qualitative difference and the qualitative difference that is derived from ‘signifying difference’. At the basis of every qualitative difference lies a feature that is unique to the unary trait. In fact, it is this feature that makes the sign one and only, distinct from the others.\(^2\) A more fundamental and radical difference provides the basis for the unary trait. It is so fundamental that it is already in existence when the first stroke appears; any character appears to be different from another at the very moment it comes into being, and it entails neither variety nor variation (Lacan, 1961–1962: 6 December 1961). In this sense, the unary trait should be taken as being related to an extreme reduction of all occasions that bring about qualitative difference (Lacan, 1961–1962: 6 December 1961). It is just like appreciating the unicity of a knitting pattern of a piece on cloth rather than the pieces of fluff on it, or its colour or design. Therefore, the sole property of the unary trait is expressed by its unicity (Chiesa, 2006: 75).

On the other hand, qualitative difference can also be perceived through ‘signifying sameness’. The sameness in question is “constituted precisely by the fact that the signifier as such serves to connote difference in the pure state” (Lacan, 1961–1962: 6 December 1961). In other words, sameness (la mêmeté) is a result of difference alone. Signifying difference reveals sameness each time.

To get back to the hunter case to clarify this point, Lacan makes the following comment: “I am a hunter [...] I kill one of them [animals]. It is an adventure. I kill another of them, it is a second adventure which I can distinguish by certain traits from the first, but which resembles it essentially by being marked with the same general line” (Lacan, 1961–1962: 6 December 1961). Taking closer look at the case in which the hunter makes strokes for his adventures, what can we say about the appearance of the first stroke? Where did this first stroke come from? Just like a child unaware of the notion of ‘counting’, the hunter makes a stroke symbolically representing his first experience, which he has first imagined and distinguished from his second experience intuitively (Chiesa, 2006: 76). In other words, what he really does is to make a stroke for the ‘same general line’ connecting the two adventures to each other, and this is in fact the ‘difference’ between the intuitively retrieved experiences of the hunter, who is unaware of the notion of counting. Thus, separation and difference, which combine them along the same line is shown by a single stroke. Unaware of the counting notion as he is, by way of making the first stroke, the primitive hunter has counted his first experience as 1. Starting from the very first stroke, this basic difference inherently continues through the coming strokes. Although the difference that inherently exists in strokes will soon be overshadowed by every single stroke that is made, this basic difference will reappear after a while as the previous condition will be repeated in another form. This, in a way, explains why it is inherent in counting. We will later return to the ‘primitive hunter’ example, which has a key role in Lacan’s reasoning of One.

It is worth noting two issues at this point. First, as one can see, there was a setting conducive to counting before the primitive hunter starts to count number 1. The fact that the primitive hunter first distinguishes his experience from other experiences before he counts his experience with a stroke is the background to this setting. The condition that makes distinction possible is what initiated counting long before. That is, distinguishing the first experience lays forward the distinctiveness of the other and, due to this, its difference. However, it is this different-from characteristic that will initiate counting. That is, the first stroke having been made, that difference will be marked. The following strokes will be made to mark difference/s in the same manner. To better grasp this argument,

3 Because ability to discriminate between the strokes is at stake and ‘counting’ will also be required for them.
one needs to avoid the fallacy that the hunter made those strokes because of the similarity among his experiences. As a matter of fact, what brings the strokes together is not a similarity, as such, but the very basic ‘different-from’ thing.

As, one can see, the characteristic that makes us count as one, that is, the unary trait (\textit{traite unaire}) is the difference. Nevertheless, according to Lacan, this difference “which not alone supports, but which supposes the subsistence alongside it of one plus one and one again (\textit{suppose la subsistance à côté de lui de un plus un et encore un}), the plus being only meant there to mark well the radical subsistence of this difference” (Lacan, 1961–1962: 7 March 1962). Therefore, the subsistence of the difference, also supporting the qualitative differences, is not one that can be considered alone. What we call difference supposes others that are in the immediate vicinity and that are subject to the difference. In addition, as with the primitive hunter, the result of counting is only for the difference. As a result of this, 1, marking the first experience of the primitive hunter, follows a counting act that has already started. To summarize, we would show one of those that are in the immediate vicinity of the difference as one, and another as one, and the result as one. And the difference would remain both basic and radical. The difference would have brought the others around itself adding them up (‘plus’), and the difference itself would have remained. Hence, the stroke of the primitive hunter would have marked the difference itself (that is, as a ‘plus’).

At this point, we see that the primary characteristic of the unary trait that makes us count as 1 – the first stroke of the hunter – is derived from a fundamental difference. This same basic difference is the very thing creating the unicity of the unary trait and revealing its unity function. Lacan utilizes Euclides’ \textit{monas} (unit) definition to better explain where, in this sense, the real thing rendering the signifier its unity comes from. As long as the unary trait (\textit{trait unaire}) is taken as difference as support, it fits Euclides’ definition of \textit{monas}. According to Euclides’ definition, Lacan defines \textit{monas} as a concept “through which something is distinguished from what surrounds it”, and \textit{monas} is “the factor that makes a whole, or a One in the unitary sense of the function” (Lacan, 1961–1962: 13 December 1961).

The function of difference that cannot vanish or be reduced is therefore to give anything its ‘one’ness. We also see that the same difference – owing to its redu-
cable self (‘plus’) – gives anything its unicity and singularity. If then becomes clearer why Lacan uses the term ‘rigor’ (la rigueur) for the signifier.

At this point we have to look at the radical difference in question more closely: To understand the counting that starts before 1 and the situation of the unitary function at the very beginning, we need to return to Lacan’s reflections on this issue and study them more extensively.

Lack, Privation, and Exclusion
The concept of difference in Lacanian literature is associated directly with the concepts of lack and privation. In this literature, true comprehension of lack and privation is closely related to the contexts in which they are used. When approached from this angle, no matter how similar the meanings ‘lack’ and ‘being deprived’ seem to conjure up, the most important difference between the two is expressed by Lacan as follows: “Lack is only graspable through mediation of symbolic”, and the other one is “something real” (Lacan, 1962–1963: 30 January 1963). Although there is not much point in delving deeper into Lacan’s concepts of the symbolic and real, his following example is still worth mentioning: “As I told you, privation is something real. It is clear that a woman does not have a penis. But if you do not symbolize the penis as the essential element to have or not to have, she will know nothing of this privation. Lack for its part is symbolic” (Lacan, 1962–1963: 30 January 1963). Such definition of lack is complemented by an ascertainment that lack, in fact, is ‘radical’ (Lacan, 1962–1963: 30 January 1963). At this point, Lacan believes that this lack being radical can be explained best by the concept of privation. Now we need to start the discussion of ‘unary trait’ from where we left off to better describe Lacan’s belief that lack is radical.

We have seen that what supports the unicity of the unary trait (traite unaire) was a fundamental difference. In a way, Lacan has likened this to Euclides’ monas to explain that this characteristic again plays a key role in the emergence of the signifier’s unity (unité). However, what Lacan aims to communicate by using this term is not that the unary traits come together to form a unity. In the proclamation that totality and unity form solidarity, the aim is not to say that there is an inclusion relation that involves totality and unity in itself. What is meant here is not that being total is according to units. Rather, unit is not the primary thing that is the basis of the unity of the total; on the contrary, it is whatever is

Because of this, Lacan long criticized ‘inclusion’ and ‘inclusion/exclusion opposition’, which he always saw as a source of misunderstanding that has caused so many unsolved problems in the rationale of class. Lacan maintains that the real essence of class lies neither in its intension nor extension, but that it always supposes classification (Lacan, 1961–1962: 7 March 62). At this point, Lacan asks us to behold the exclusion that is inherent in the very structure of the class and which, in a way, is a “radical support” (Lacan, 1961–1962: 7 March 1962).

But, what does ‘exclusion’ mean as a ‘radical support’? I believe that understanding this point in Lacanian thought plays a key role in understanding – on the most basic level – his reflection on One and, in general, his whole doctrine. After all, according to Lacan, even existing basically hinges on an exclusion relationship (e.g. ex-sistere) (Lacan, 1971–1972: 15 March 1972). Indeed, Lacan traces this relation far back to logical operators such as ‘some, at least one’ (∃x), ‘whole’ (∀x).

It is helpful to scrutinize Lacan’s examples to understand what exclusion relation means. Although these examples show the same classification logic as in ‘mammals’ and ‘vertebrates’, they are closely related to the issue we mention above. They are particularly related to the counting that previously started and that allows for the count as 1. As mentioned earlier, the thing that made the primitive hunter make the first stroke and count it as one is derived from a basic difference. The primitive hunter used to make one stroke for the difference. That is, the unary trait that makes the stroke count as one was the ‘difference’. The difference in question now can be expressed in terms of the lack of the stroke. The unary trait can be its ‘lacking’ as it can be counted as one; that is, it produces one stroke. Thus, it can be said that the counting of the one that ‘lacks’ appears as one stroke.

Lacan claims that the unary trait can be ‘lacking’ (manquer), and he exemplifies this, using mammals: Zoology mammals cannot be classified based solely on the materiality of the mamma. The reason for this is that it has to first distinguish, or separate, the mamma; such distinction is possible through the definition of the lack of the mamma. Lacan introduces the unary trait whereby the zoologist
can define the lack of a mamma as -1. The case in which the mamma cannot cease to exist is (-1); that is, the exclusion of the previous one. In its particular proposition, in other words in the case of some mamma existing, the unary trait is +1. Hence, mammae never existing and their existing in the universal and particular sense are classified. Lacan demonstrates these using a circle chart divided into fourths. The bottom right quadrant displays the non-existence of the mamma and thus is signified by the unary trait -1. On the other hand, in the upper left quadrant, the direct opposite of it, is the impossibility of the mamma’s being non-existing in the universal sense and the unary trait is (-1). Finally, in the bottom left is +1.

Lacan leaves the upper right quadrant blank, and that is where he both demonstrates the fundamental logic of exclusion and shows this logic in the classification of mammals. Lacan takes the unary trait as -1 also for this area, for privation itself is showed by -1. At this point, one may wonder “on what basis it is so?” This question can be formulated as follows: “Could it be that there is no mamma?” The answer to this question is “not possible, nothing maybe”. The second response, “nothing maybe”, leads us to the basis of the idea conveyed to us by this quadrant of the circle. Lacan states that he locates the “real” itself starting from “not possible” (Lacan, 1961–1962: 7 March 1962). In other words, “not possible” is the origin of enunciating (Lacan, 1961–1962: 7 March 1962). Thus, the reply “not possible” proclaims privation in which exclusion is grounded as though taking as a base an impossible place. This proclamation constitutes the possibility of the other quadrants of the circle graph. It is, indeed, nothing but the statement “nothing maybe”; that is, the idea conveyed in the bottom right quadrant. In this quadrant, -1 points to “the logical foundation of any possibility of an universal affirmation” (Lacan, 1961–1962: 14 March 1962), thereby revealing the upper left quadrant of the circle graph as -(-1), universal affirmation.
A much deeper place, “the uncounted circuit”, is the base upon which -1 – standing separately in the upper right quadrant – establishes the aforementioned possibility. The privation here is the privation of “the uncounted circuit” (du tour non compté). The privation of the Real... The unary trait has appeared as real since “to be real” presupposes “computation, counting, to be grounded” (Lacan, 1961–1962: 14 March 1962). Thus, it has become clear that what lies at the root of the stroke the primitive hunter counts as 1 is a privation of real as not possible (Lacan, 1961–1961: 7 March 1962).

II. Lacan’s One-Sidedness

Tracing Exclusion
In light of the discussion to this point, I would like to draw the readers’ attention to a few issues: First, upon closer examination, Lacan bases ‘possibility’, which is a natural consequence of the relation of exclusion, leaving apart, and making an exception, upon ‘impossibility’. What makes ‘possibility’ legitimate is ‘impossibility’. Its enunciation as a privation is a real thing. It – stated differently, ‘the possibility of impossibility’ – is the origin of what makes the primitive hunter count as 1. The counting, which is said to have started previously, starts from there already. That is, it starts from a place that is much prior to the counting subject. If this is so, in my opinion, Lacan’s theme of ‘impossible’ could be further investigated and this prior counting re-examened.

Excluded privation was possible through the enunciation of nothing. And what lay at the root of this enunciation was “not possible” (Lacan, 1961–1962: 7 March 1962). Therefore, what lay at the root of all things real was ‘impossible’. However, here, one point is worth highlighting: Lacan does not regard ‘impossibility’ as the opposite of ‘possibility’ in any way whatsoever. According to him, it makes more sense to state it as follows: “As the opposite of the possible was the real, we would opt for defining the real as the impossible. I, personally, do not see anything that contradicts it...” (Lacan, 1998: 6 May 1964). This is a natural consequence of the logic of exclusion, and we can also state this as follows: All things that are called real are the ‘possibility of impossibility’, which is also the ‘impossibility of possibility’.
What about the ‘impossibility of the impossible’ and the ‘possibility of the possible’? If what the impossible excludes is the possible, what can be said of the ‘impossibility of the impossible’ and the ‘possibility of the possible’ from this viewpoint?

Above anything else, the following should be said about the impossibility of the impossible: Since this is not ‘the possibility of the impossible’, both the enunciation of the possibility of nothing (i.e. the possibility of all things real) and the ‘impossibility of possibility’ are impossible. Nevertheless, it is right at this point, where ‘the impossible is impossible’, that we should start introducing the possible because the impossibility of the impossible is confirmed here. This possibility is not ‘the possibility of the impossible’, for what is in question is not the impossible but the impossibility of the impossible. What can be said about this possibility? This possibility cannot be impossible because, if it were so, it would be ‘the impossibility of the possible’; this, as mentioned above, is impossible. This is a situation wherein the possible is possible. If we look at this from another perspective, just as Lacan considers the real from two perspectives, this could also be called ‘the impossibility of the impossible’.

For the time being, let us leave out the topic of the impossible until we take it up again while discussing ‘the error of counting’, and let us return to counting. Hence, the analysis Lacan carried out regarding the case of the primary school pupil should be reviewed. To sum up, this analysis covers:

i) how 1 emerged;
ii) what supports counting as 1;
iii) the investigation of what (the foundation of) 1 is.

The case of the primitive hunter is important for Lacan as it allows him to explain the essence of his reflects on this issue. However, this example could have well been cleared of its rich associations and stated as follows:

I have a blank sheet in front of me, and I am looking at it, wondering how a ‘dot’ can appear on it. I want to discover how the first dot appears just as I want...

4 The ‘impossibility of the impossible’ is not the same as ‘not impossible’. While ‘not impossible’ entails affirmative negation, the other entails negative negation.
to learn how the first stroke of the primitive hunter appears and how his first adventure is counted as 1. However, I am leaving aside the issue of counting to deal with it later in the paper.

In such a situation, we have two choices regarding the appearance of the dot: The first choice is closely related to Lacan’s logic of ‘exclusion’ that we attempted to expound above; that is, understanding what causes the appearance of the dot on the paper. It seems wiser to raise this question: How is the appearance of the dot distinguished? What enables us to distinguish the dot from, say, the rest of the sheet? The fact that the dot is distinct from the page is the first thing that enables us to distinguish the dot. But how is it possible that the dot is distinct from, say, the page? The distinctiveness becomes possible by means of one difference. As in the example of the primitive hunter, what creates the dot is the difference. For example, this is the contrast that appears on the page as a dot. The dot is, so to speak, the stroke made for the difference. Lacan claims that just as the stroke is formed with the difference, so is the dot. What, then, can be said about the subsistence of the dot? According to Lacan, the stroke appears as the difference, the stroke co-exists with the difference that causes the stroke. Similarly, the dot and its difference (e.g. contrast) exist concomitantly. If we are to analyze this in terms of the precedence and antecedence of what appears and what makes it appear, we would have to say this: first the subsistence of the difference (what makes it appear), then the dot, which concomitantly appears with the subsistence of the difference.

The second choice is rather related to the rationale of ‘inclusion’. What could be said if we consider the dot from the viewpoint of its state of having emerged and if we look at what may emerge rather than its agent?

The dot, without relying on anything else, will be distinguished from the rest of the sheet by its emergence alone. This having been accepted, the subsistence of the difference – which helps distinguish and makes distinctiveness possible – will soon be envisaged. Therefore, soon after the dot appears as a possible position, it will coexist with the difference. Then, if we are to evaluate the second choice in terms of the precedence/antecedence of what appears and what makes it appear, we should assert the following: first the dot concomitant of the existence of the difference, then the existence of the difference.
The first and the second alternatives are dissimilar. The following is a before-and-after illustration of these two alternatives:

<table>
<thead>
<tr>
<th></th>
<th>First Alternative</th>
<th>Second Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>(before)</td>
<td>o (difference)</td>
<td>* o (dot and difference)</td>
</tr>
<tr>
<td>(after)</td>
<td>o ° (difference and dot)</td>
<td>o (difference)</td>
</tr>
</tbody>
</table>

Figure 2

Whereas the dot, signified in Figure 2 by *, is in an exclusive relationship in the first alternative, it is in an inclusion relationship in the second alternative. Going back to the issue of counting will shed more light on what these alternatives point at.

As a natural consequence of the rationale of exclusion, Lacan established ‘the possible’, basing it on ‘the impossible’. The same rationale applies to ‘existence’ and ‘inexistence’ (l’inexistence). “Existence can be established by being based on non-existence.” It is evident enough in the illustration in the earlier circle graph. “Inexistence,” on which existence is based, is not “nothingness” (le néant), and it can be taken as a number (number 0). What is more, that is one of the numbers that make up the sequence of whole numbers (nombres entiers), and there is “no theory of whole numbers if you do not take into account what is involved in zero” (Lacan, 1971–1972: 19 January 1972).

The Pascal's Triangle and the Recurrence of Inexistence

Among the justifications on this topic, the most prominent one is Frege’s “Foundations of Arithmetics” (“Die Grundlagen der Arithmetik”). On the other hand, Lacan makes an evaluation also tracing back to Frege’s justification of whole numbers starting from 0. He makes very important points regarding One and the aforementioned counting, which we will elaborate later in the paper. The following is a summary of this evaluation:

1. Frege’s justification of 1 starting from 0 is significant when 1 is considered as the signifier of inexistence.
2. Frege considers the number of objects belonging to a concept as the concept of number that is number N. Then, the consecutive numbers form. In this case, if you count starting from 0 (0 1 2 3 4 5 6), what comes next is 7, but 7 what? This is 7 of something. This is 7 of the inexistent, the inexistent that lies in the foundation of repetition.

3. In the arithmetic triangle,

```
  0 1 0 0 0 0 0
  0 1 1 1 1 1 1
  0 1 2 3 4 5 6
  0 1 3 6 10 15
  0 1 4 10 20
  0 1 5 15
  0 1 6
  0 1
```

Figure 3

this is evident in the fact that all is enframed by 0. That there is no difference between 0 and 0 lays the ground for the derivation of 1. The requirement of distinguishing the distinction among all these 0s – that is, distinguishing that there is no difference between them – is absolutely necessary for the derivation of 1. Thus, what is recurrent is repeated as inexistence. Repetition is posited at first as the repetition of 1, qua the 1 of inexistence?

4. There is not a single 1, but the 1 that is repeated and the 1 that is posited in the sequence of whole numbers (Lacan, 1971–1972: 19 January 1972).

Now let us move on to this discussion of Lacan, which he presents independently from Frege’s reasoning, but not leaving this aside completely.

cism, without going into detail, goes as follows: A Platonian will prefer to call it ‘something of the One’ (*il y a de l’Un-y a de l’un*) to ‘One’. In brief, Lacan does not accept Plato’s ‘One’, which does not allow any ‘one thing’. That is why Lacan uses this term. Nevertheless, according to Lacan, when one looks at it from the viewpoint that Plato is unknowingly a Lacanian, if we may say so, something that belongs to One is one thing that dissolves from it. As it cannot be related to anything except the sequence of whole numbers, it is not anything but the One. After all, it also lies at the basis of the fallacy in Frege’s logical derivation of 1 from 0; that is, 1 that is lacking at the level of 0. It is because of this lack of One that the sequence of whole numbers is revealed/formed. From 0 to 1, just as the lack of One yields ‘2’, ‘3’ and the others are produced because the same lacking continues.\(^5\)

In addition to these, One, that is, One lacking, does not mean the same thing in all contexts. Something which starts, from One as all and that then continues are no longer the same; that is, these are not univocal. Bifidity of the One exists. This is an issue that is brought up in Plato’s dialogue (Lacan, 1971–1972: 15 March 1972).

Then, in Lacan’s discussion of One, it can be inferred that both One – that is, One as *il y a de l’un*, which is issued in the logic of number and the real One, which is in fact based on the real One – are not the same as the One that Plato elaborates in the *Parmenides* dialogue and that Hegel refers to in *Science of Logic*.

This is true at least from the viewpoint of Lacan. Lacan’s One is grounded not in sameness but in difference. One begins at the level at which there is One lacking. (Lacan, 1971–1972: 19 April 1972). It does not begin any earlier.

What constitutes One is formulated by the lack. The 1 in the first repeated line of the *Pascal Triangle* begins from its lack: 0 (Lacan, 1971–72: 19 April 1972). That means counting is, as 1 of 0, the repetition of 1, the repetition of inexistence, and the repetition of a basic and radical lack.

\(^5\) In fact, as can be seen later, 2 is inaccessible (Lacan 1971–1972: 10 May 1972).
Reconsideration of the Lack in Counting

To better understand Lacan’s line of thinking in his accounts and reasoning of the exclusion, a reexamination of the Pascal Triangle is needed.

I propose the following model, which comprises 1s, for the representation of the Pascal's Triangle.

```
1
1 1 = 1 1
1 1 1 1 = 1 2 1
1 1 1 1 1 1 = 1 3 3 1
1 1 1 1 1 1 1 = 1 4 6 4 1
... ...
```

Figure 4

The question at this point is this: “How is counting realized?” Here, recalling Lacan’s primitive hunter example and the example we cited through the “appearance of the dot” is required. The first option as regards the appearance of the dot gains importance for the present discussion. The first alternative in Figure 2 indicated that it occurred like this:

```
0 (difference)
0 * (difference and dot)
```

Thus, this figure could be used to represent the primitive hunter counting his first stroke as 1. In the light of the way Lacan presents this, in essence, we can see this figure in the Pascal's Triangle illustrated in Figure 4. Specifically, what 1 counts as 1 in the first line is not itself. That takes whatever precedes as 1. This can be likened to the case of soldiers counting themselves during their daily gatherings; the first soldier in the row calls out “one”, meaning that ‘there is no other soldier’ in the row before him. When the first soldier calls out 1, he is marking the non-preceding soldier in the row with 1. Similarly, when the next soldier calls out “two”, he counts the soldier that comes before him in the row. In other words, he counts that ‘there was no soldier before the first soldier’ and ‘the first soldier’, by means of which he does not count himself but he marks
those that precede. As a matter of fact, the first soldier’s ‘one’ comes out at the point where the soldier distinguishes himself from the soldier before him. He calls this differentiation 1. The soldier counts as 1 what he perceives as ‘non-existing’ before himself. He does not count himself – not yet! His differentiation will be done by the next soldier after himself. Accordingly, he will be counted later. The nature of counting as to such deferment is further explained in the illustration of the Pascal’s Triangle below.

![Pascal's Triangle](image)

Figure 5

The innermost box counts the one before it as 1. The next box puts the mark 1 for the innermost box before it, and another 1 is transferred from the box that it has counted. That is, it has counted 1 1. The following box marks the next box with 1, and it puts 1 1 for the boxes it has counted. As 1 transfers from the innermost box that is in front of it, it counts 1 1 1 1. The next box puts 1 for the next box in front of it, and puts 1 1 1 1 for those it has counted. It puts 11 for those counted by the next box in front of this one, and because the innermost box in front of it transfers 1, the final count is as such; 1 111 11 1. This goes on like this recursively. We can depict it for all levels:

\[
\phi, \phi, 1, 1, \phi, 1, 1, 1, 1, \phi, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
\]

\(\phi\) : symbolizes the one that is ahead at the start.
The essence of the counting that takes place here could also be described by this analogy: What is called ‘counting’ is constructing storeys in a building. In the *Pascal’s Triangle*, this starts with making the mark 1 that stands at the front. The next one marks, or repeats, whatever it sees before it. The second line is an entire repetition of the first line for it and the one that is in front of it. The third line, or the third storey, marks those that come before it as they are. That is, it marks the second line, the first line, and the one in front of it. This goes on in this fashion. The mark at the beginning is basically different from the one that stands before (the lack resulting from the fact that the mark did not exist before), so counting is delayed, and it takes place in the repetition. The first storey is counted only after the second storey.

Let us examine this according to the first alternative presented in Figure 2.

In this figure, parallel to Lacan’s explanation, we take the terms as o: 0 and *: 1. When we take the difference as 0 and the dot as 1 – the appearance of 1 in this situation is as follows:

```
0
0 1
```

Because 1 is realized owing to the difference and because the difference is not eliminated when 1 is produced, according to this figure, with the next 1 the following is produced:

```
0
0 1.
```

Accordingly, it appears at the other 1 as

```
0
0 1
```

0 1. As the appearance of each 1 is based on the difference, it continues like this:

```
0
0 1
```
Since the appearance of 1 is as 0 0 1 in this continuing sequence, each 0 is connected with the 0 1 below because 0 1 is formed as 0 1 on the grounds of that 0. At this point, the Pascal's Triangle and whole numbers form as follows:

The appearance of the first 1 is the first 1 in the Pascal's Triangle. Let us jot down every new 1 below. Then, the following picture will emerge:

However, the first 1 has already been derived, so it should have been shown next to the 1 at the bottom. That is, we should have shown or counted the 1s up to that particular 1. As a result, the picture for now is as follows:

When we jot down the 1 which then emerges, this will produce

However, to show the 1s that have been derived up to the emergence of this 1, we have to jot down the previous ones next to it. The present picture, then, is as follows:

A sequence which goes on like this (0 0 1 0 1 0 1 0 1...) produces the sequence resulting in the Pascal's Triangle and whole numbers. Obviously, every new number is like constructing a new storey. This takes places in the appearance of every new 1. In addition, the lack of 1 on the level of the first 0 delays the counting process exactly by One. And, in fact, there is no 2, which has been derived by means of 0 and 1. The generation of numbers is exponential, as in adding storeys. Number 2 is inaccessible.
A Closer Focus

Lacan claims that the 1 in question here was derived from the lack indicated by 0 (Lacan, 1971–1972: 10 May 1972). That was the lack of One. What produced 1 was the lack of One at the level of 0.

It can be claimed that this is the reality of One from one aspect only and it finds its real meaning in Lacan’s statement regarding “the inaccessibility of 2”. In the following part I will attempt to elaborate the other aspect of this reality detailed above.

Once again, let us first have a look at the first alternative of Figure 2, or the figure that involves repetition in counting. Now a greater focus on the delay in the genesis of 1 in this figure is required.

The figure showed the genesis of 1 as follows:

\[\begin{array}{c}
0 \\
0 \quad 1.
\end{array} \]

When exactly is 1 counted? The fact that 1 appears because of the lack of One at the level of 0 delays it by One on the level of 0. Because, at the level of 0, 1 will always be missing by One, 2 (Two) is inaccessible. However, when do we start to count the delay? This is how 1 and the difference – which concomitantly exist – are delayed according to the lack at the level of 0; that is, One is lacking. This could have been expressed as follows: the delay of 1 after the difference that exists at the same time according to the lack at the level of 0. Each situation can be illustrated as follows:

\[\begin{array}{c}
\text{0} \\
\text{--------} \\
\text{0} \quad 1
\end{array} \quad \begin{array}{c}
\text{0} \\
\text{--------} \\
\text{0 } \text{--- } 1
\end{array} \]

Figure 6

The lack of One also determines/establishes what distinguishes 1 from 0. Having mentioned this difference, let us show this difference on the right-hand side of Figure 6. The illustration on the left is more of an illustration pointing to the fact that the lack is radical. The illustration on the right, however, depicts that
the lack propagates itself in the form of difference. Furthermore, both the radical lack and the (radical) difference that play a role in the genesis of 1 are seen here. The radical lack is the lack of One at the same time. And the difference is both the difference of 1 and the difference of the lack. More specifically, it both is derived as 1 and does not disappear as the difference because the lack is radical, and the separateness between both differences is due to difference being radical. Then, let us show the difference with #, but because it is repeated, let us put another #. And let us represent the lack being radical, the without-One state, with the void in between. Then, the new representation is like this:

```
#       #
```

This representation also means the inaccessibility of Two.

III. Toward the Conclusion

The Rationale of Inclusion and One

Let us now return to the dot example and focus on the second alternative in Figure 2. We will consider the possible consequences of the second alternative. To this end, we will review what consequences we drew from the first alternative:

1) Counting is always delayed; thus, it is a post-process (a posteriori);
2) The delay is owing to the lack of One;
3) A radical lack is prior to what is counted as 1;
4) Therefore, the thing that is counted in this alternative is at the ‘utmost’ front; it is $\phi=0$, or without One, the radical lack;
5) ‘The possibility of the impossible’ is where this alternative finds its basis;
6) This is described within the rationale of exclusion.

A reconsideration of the other alternative in the light of this summary obliges us to pose this question: Where is the place of counting in this alternative? The related figure will be retrieved within this discussion. The figure was as follows:

```
*       o
   o
```
The only thing that seems related to counting can be shown by the symbol ‘o’. In the first alternative it is this difference that is subject to counting. Now, let us return to the first alternative before we dwell further on this difference that could be subject to counting in the second alternative.

In the first alternative, we counted 1 for what is in the front, that is, for $\phi=0$, or we rather used $0\ 1$ for $\phi=0$. $\phi=0$ stands for a one-less situation where dot (*) in the first alternative does not exist, or where it falls later as 1. Focusing on the situation itself, can we call one-less, as $\phi=0$, the difference in the second alternative? As is clear in the discussion above, if the difference in the second alternative is made subject to counting, this difference is either $\phi=0$ or it is before or after. The after (a posteriori) situation has been elaborated well enough in the light of the Lacanian elaboration. This brings us to an analysis of the remaining two situations.

First of all, let us examine the case where the difference is in front of $\phi=0$. If we assume that the difference is $\phi\phi=0$ and start counting, this will yield $\phi\phi=0$, $\phi=0$, and $0\ 1$. However, because of the counting of $\phi\phi$, we have to read $0\ 1$ as 1. The reason for this is that, as we found out earlier, counting continues as in $0\ 0\ 1\ 0\ 1\ 0\ 1$. However, because of $\phi=0$, $0\ 1$ should remain $0\ 1$. Then, in the event that $\phi\phi=0$ is in the front, we should consider the two-term counts such as $0\ 1$ as One because $0\ 1$ is both $0\ 1$ and 1. Put differently, in this situation, $\#\ \#\$ will be $\#$ due to $\phi\phi=0$. This points toward One and the genesis of One. However, it is One which generates, pointing to the prior rather than the posterior.

The $\#\ \#$, which we arrived at by counting minus 1, is the counting forward of the difference. The counting of the difference backward, on the other hand, is $\#$. Considering also the second alternative, counting backward indicates ‘before’ as ‘the impossibility of the impossible’ or ‘the possibility of the possible’ in the example with the dot.

It is time we examined the second alternative, or the situation where the difference in the second alternative is the same as $\phi=0$; the notations so far are $\#$, as the indicator of One, and separate from this, $\#\ \#$, as the indicator of Two. This is the case where $\phi\phi=0$ is equal to $\phi=0$. Sameness can be demonstrated in two ways: Either via $\phi\phi=0$ or $\phi=0$. When it is demonstrated through $\phi\phi=0$, as regards the second alternative of the case with the dot, a backward counting of the dif-
ference is specified. When it is demonstrated through $\phi=0$, on the other hand, as regards the first alternative of the dot example, a process of counting forward of the difference is specified. However, in both situations the specification of the sameness is achieved through some kind of strife because the ‘difference’ brings about counting. Nevertheless, because of the counting which is caused by the ‘difference’, the flux of the sequence $0010101...$ will go on.

Consequently, if we re-examine all three situations that result from the comparison of the first and second alternatives as to the dot, we have to use the following notations: the situation of \textit{a posteriori} counting of the difference (# #); and the situation of counting \textit{backward} the difference (#). If the first and the second alternatives are expressed together, we have to resort to # and # #. Because the next representation will involve a depiction of the permanent difference and the Sameness together, it will be in either of the ways shown below.

\[
\begin{align*}
\text{#} & \text{ or } \text{# #} \\
\text{# #} & \text{ or } \text{# #} \\
\end{align*}
\]

(Specification of sameness as to the second alternative)/(Specification of sameness as to the first alternative).

In other words, thus, we can call it the permanent difference together with the specification of \textit{before} and \textit{after}.

\textbf{Interpreting the Symbol # and the Final Word}

Now we have the following separate options as regards the representation with #.

\[
\begin{align*}
\text{#} & \\
\text{# #, # #, # # or # #} \\
\text{#} & \\
\end{align*}
\]

Then how should we read these options and #? First of all, separate from each other as these options are, the last representation (#

\[
\begin{align*}
\text{# # or # #} \\
\text{#} \\
\end{align*}
\]
is rather a representation that deals with the relation of One with Two. This is
twofold: from One to Two and from Two to One. The previous representation (#
#) is geared toward Two, and the one before that (#) is geared toward One.

While the representation that complies with Lacanian thought is # #, in Hegel's

and

#

are together.

That is, # # #. The representation # can be said to have a position that can make
thinking prior. The reason for this is that, considering the different states of the
condition above, the display of ‘one-ness’ and ‘differences’ can only be achieved
based only on the symbol #. In addition, this representation is conducive to
different ways of thinking. For example, in the case with the dot, according to

and

#

#, where the first and the second alternatives are considered together, we can
consider the Pascal's Triangle under the representation of # # #; there should
be another triangle that is prior to the Pascal's Triangle according to the other
side of this representation; that is,

#.

And that is a reversed triangle. Though it may be difficult to imagine, the rep-
resentation predicts this. It should be so according to a counting that includes
\(\phi \phi = 0 \). It is a flow moving in the reverse direction. And it is only one of the many
things than can be claimed based on this representation.

As can be clearly understood from the representation of #, the Lacanian doc-
trine of One is a one-sided doctrine which perceives One without One. It can be
said that the other side of the reality regarding it is ‘completed’ when the other
alternatives showed by # are considered. It is also worth noting that this is ex-
Actually how disintegration in language and thought and ‘one’ness can be looked at from a higher perspective thanks to an opportunity provided by #.

References