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V članku predstavimo model advekcijskega prenosa točkovno 
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lizi sledilnih poskusov. V članku prikažemo uporabo mode la 
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pretoka v kraškem prevodniku med ponorom Ames in izvirom 
Wakulla na severovzhodnem delu Floride.
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Abstract UDC 556.3:551.44
Guangquan Li & Hong Liu: An advection–dilution model to 
estimate conduit geometry and flow
As conduit water carries pollutants introduced from a point 
recharge downgradient, a contaminant-free seepage from the 
surrounding limestone is added into the conduit water and 
actively dilutes the pollutants. In this study, the transport with 
advection and this active dilution but no dispersion, is solved 
using the method of characteristics. The complete solution 
considering initial condition, boundary condition, and 
production is presented. Scale analysis reveals that the model 
is applicable when injection of pollutants at sinkholes persists 
long enough but unsuitable for analysis of dye tracing experi-suitable for analysis of dye tracing experi-dye tracing experi-tracing experi-
ments. An approach combining the model with dye tracing 
experiment is used to quickly estimate the geometry and 
flow of a major conduit from Ames Sink to Wakulla Spring, 
Northwest Florida.
Key words: karst conduit, dilution, method of characteristics, 
breakthrough curve.

INTRODUCTION

A karst aquifer is featured with interconnected solution 
caves or conduits which provide preferential pathways 
for groundwater flow and contaminant migration 
(Shuster & White 1971; Kiraly 1998). Transport of 
contaminants in karst aquifers is driven by a fast 
turbulent flow in cavernous conduits as well as a very 
slow laminar flow in the limestone matrix (including 
small pores, fissures and fractures). These dual flows 

are the most distinct feature of karst aquifers, and 
thus contaminant migration in the aquifers has two 
completely different time scales. Contaminants entering 
the aquifers from sinkholes with point recharges 
flush through the conduits after days to weeks, while 
pollutants seeping downward with non-point recharges 
via the surface reside in the aquifers for tens of years 
(Even et al. 1986). 
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ADVECTION–DILUTION IN A CONDUIT

THE GOVERNING EQUATION
The essential features of the advection–dilution in a 
conduit may be described using a relatively simple one–
dimensional equation. Ignoring longitudinal dispersion 
and assuming zero production (i.e., no contaminant 
enters the conduit from the matrix), solute mass conser-, solute mass conser- solute mass conser-mass conser- conser-conser-
vation requires: 

 

where C [M/L3] is the solute concentration in the 
conduit (averaged over the cross–sectional area), W [L/T] 
is the speed of conduit water averaged over the conduit 
cross-section, z [L] is the distance downstream from the 

During a storm event, the head in a conduit may 
exceed the head in the matrix, such that water and 
contaminants are emplaced from the conduit into the 
matrix, which later get released back into the conduit 
when the pressure difference between the conduit and 
the matrix becomes reversed. That scenario has been 
discussed by Field (1993) and Li et al. (2008). In this 
paper, we shall only discuss an ordinary hydrogeologic 
condition in which contaminant-free water is driven 
from the matrix into a conduit and actively dilutes 
pollutants introduced from a sinkhole or doline. Water 
seeping from the matrix into conduits is typically slow 
and pollutant-free, as the potential contaminants have 
enough time to experience adsorption by rock minerals as 
well as decomposition by bacteria. In contrast, pollutants 
entering from sinkholes, dolines, swallow holes, grikes, 
etc. have much less time and available surface area for 
such physical adsorption or biochemical reactions (Field 
& Pinsky 2000), and can therefore contaminate the 
aquifer to a large extent in a short period. 

Decrease of contaminant concentration in a 
conduit is caused by three primary mechanisms: a 
passive decrease induced by hydrodynamic dispersion 
in the conduit (Taylor 1954), a passive retention/release 
between mobile– and immobile–water regions, and an 
active dilution by the matrix seepage. There is signifi -is signifi-
cant prior work regarding transport in a karst conduit. 
An advection–dispersion equation with a supplemental 
equation accounting for retention in immobile–water 
regions has been developed by Toride et al. (1993) to 
describe transport in soils and was first introduced by 
Field & Pinsky (2000) to transport in a single conduit. The 
model is called 2RNE (two–region non–equilibrium). 
The weakness of that model includes –1) it requires 
specifying fitting parameters such as an exchange 
coefficient between mobile– and immobile–water 
regions; 2) water exchange between the conduit and the 
surrounding matrix is not considered such that conduit 
flow was assumed to have a constant velocity. Despite 
these disadvantages, the 2RNE is widely used for analysis 

of transport in karst conduits, because retention/release 
was well modeled and it can successfully reproduce the 
often–observed strong skewness in spring breakthrough 
curves, e.g., Field & Li (2011). Birk et al. (2006) used a 
hybrid method (with MODFLOW and the Darcy–Weis-the Darcy–Weis-
bach equation to simulate matrix seepage and conduit 
flow, respectively) to model the discharge response and 
the breakthrough curve at a spring. In that scenario, 
water entering the sinkhole is solute-free, while water 
released from the matrix is rich in Calcium. Using the 
method of characteristics, Li (2009) derived an analytical 
solution for the case where the seepage flow from the 
matrix carries solutes into a conduit, being diluted by a 
solute-free sinkhole flow. Li & Loper (2011) developed a 
new model in which advection, dilution and dispersion 
were included, sought an approximate analytical solution 
for the initial–value problem, and successfully simulated 
a dye tracing experiment performed by Davies et al. 
(2004) between Ames Sink and Indian Spring, North-4) between Ames Sink and Indian Spring, North-) between Ames Sink and Indian Spring, North-
west Florida. Later, Li (2011) used transform of variables 
to obtain the solution for the initial-value problem as 
well as the solution for the boundary-value problem of 
that model. In this paper, we are interested with a simple 
transport model that can be used to quickly estimate 
geometry and flow of a conduit. 

In our conceptual model, contaminant enters a con-conceptual model, contaminant enters a con- model, contaminant enters a con- contaminant enters a con-contaminant enters a con-ontaminant enters a con-
duit with the sinkhole recharge, is diluted by the uncon-
taminated seepage released from the surrounding lime-surrounding lime-lime-
stone, and eventually is transported to a spring. (Dissolved 
minerals and decomposed organic matters from the 
matrix into the conduit will be considered afterward 
in this paper). We firstly construct the mathematical 
model and present its solution by intentionally neglect-neglect-
ing conduit dispersion. Secondly, an approach is used to 
estimate the geometry and flow of a major conduit in the 
Woodville Karst Plain, Northwest Florida. Thirdly, the 
role of conduit dispersion is analyzed and a sufficient 
condition for applying the advection-dilution model is 
offered.
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sinkhole, and t [T] is time. Assuming a circular conduit 
with constant radius a [L] and a constant specific flux 
q [L/T] of water entering the conduit from the matrix, 
the velocity of conduit fl ow is increased in the down-velocity of conduit fl ow is increased in the down-of conduit flow is increased in the down-is increased in the down-increased in the down-d in the down- in the down-in the down- the down-
stream direction according to water mass conservation, 
i.e., 

where W0 is the averaged speed at the sinkhole 
(z = 0) and 

The conduit domain is 0 ≤ z ≤ Z, where Z is the 
downstream location of the spring. Equation differs 
from the traditional advection–dispersion equation in 
that it neglects dispersion but incorporates the specific 
water flux q, which causes active dilution. The linear 
increase of velocity with downstream position z is due to 
the addition of matrix water uniformly (assumed) into 
the conduit. Equation (2) does not contradict the Dar-Equation (2) does not contradict the Dar-
cy-Weisbach equation. Combining Equation (2) with 
the Darcy–Weisbach equation would yield a non–linear 
pressure distribution along the conduit that is possible. 
If the seepage flux q is set to zero, the flow velocity along 
the conduit would be a constant and the pressure would 
degenerate into a linear distribution. 

Equation (1) is a first–order partial differential 
equation, the solution of which requires specifying an 
initial condition in the conduit, i.e., 

and a boundary condition at the conduit entrance, i.e., 

ANALyTICAL SOLUTION USING METHOD  
OF CHARACTERISTICS

Substituting Equation (2) into (1) yields a first–order 
wave equation with the characteristic equation (Strauss 
1992) being

The characteristic curves, plotted in Fig. 1, are ob-he characteristic curves, plotted in Fig. 1, are ob-characteristic curves, plotted in Fig. 1, are ob-curves, plotted in Fig. 1, are ob-, plotted in Fig. 1, are ob-Fig. 1, are ob-ig. 1, are ob-. 1, are ob- 1, are ob-1, are ob-, are ob-are ob- ob-
tained by integrating the first two terms of Equation (6) 
and expressed as 

where η is a constant of integration that represents 
the intersection of the curves at the t axis. From the 
Lagrangian viewpoint, the characteristic is the 
displacement–time curve for fluid particle, and thus 

according to (7), , which is correct because 
fluid particle at the conduit entrance has the speed W0.

The characteristics fill the first quadrant of the z–t 
plane as η varies from –∞ to ∞. The characteristic for 
η = 0 passes through the points (0, 0) and (Z, t) where

is the travel time for fluid particle to reach the spring 
from the sinkhole. This characteristic divides the first 
quadrant of the z–t plane into two domains. Character-
istics in domain B, having η < 0, intersect the line z = 0, 
t > 0 and solutions in this domain satisfy the bound-
ary condition, while characteristics in domain I, having 
η < 0, intersect the line z > 0, t = 0 and solutions in this 

fig. 1: Characteristic curves, 
z + W0τ = W0τe(t-η)/τ. As η 
changes, the curves fill the first 
quadrant of the plane. I and b 
denote the domains determined 
by the initial condition and the 
boundary condition, respectively.
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domain satisfy the initial condition. The characteristics 
have positive slope, so that as time goes on, progressively 
more solute concentration in the conduit is determined 
by the solution having characteristics in domain B.

The two families of solutions applicable in the two 
domains are easily obtained from Equation (6). Integrat-Equation (6). Integrat-. Integrat-
ing the second and third terms of Equation (6) yields a 
family of solutions satisfying the initial condition, while 
the second family of solutions is obtained by integrating 
the first and third terms of that equation and satisfying 
the boundary condition. Th e combined solution is ex-condition. The combined solution is ex-is ex- ex-
pressed as (see Appendix A for detailed derivation):

For t < t, the solute concentration at the spring (z = Z) 
is determined by the initial condition, while for t > t, the 
concentration is determined by the boundary condition. 

It is interesting to explore the physical meaning of 
Equation (9). Similar to Equation (8), the travel time for 
fluid particle to reach the downstream location z from 
the conduit entrance is . Therefore, 

 
in Equation (9b) represents the solute

 
concentration of the sinkhole flow at time

 
. 

For Equation (9a), supposing the fluid particle reaching z 
at time t starts from downstream location z✳, the traveling 

time from z* to z will be . This time is equal 

to t, from which we get z✳ = (z + W0τ)e−t/τ−W0τ that 
appears in Equation (9a). This is the starting position of 
fluid particle in the conduit that will reach z at time t. To 
facilitate understanding the exponential term in Equation 
(9a), we need to rewrite the formula for z✳ into 

. Using Equation (2), this equation can be 

further rewritten as , the left side of which 

represents exactly the ratio of the contaminated water at 
z✳ diluted by the side seepage from z✳ through z.

The solution presented in Equation (9) assumes that 
water entering the conduit from the matrix contains no 
solute. The case where the matrix water contains solute is 
a production-value problem, which has been analytically 
solved by Li (2009). The general problem in which solute 
can preexist in the conduit (the initial-value problem), can 
enter the conduit from the sinkhole (the boundary-value 
problem), and can release from the matrix into the conduit 
(the production-value problem), is a superposition of 
these three problems, because the governing equation is 
linear with respect to concentration. The complete solu-solu-
tion is listed in Appendix B.

ExAMPLES

This section contains two simple solutions illustrating 
the behavior of the breakthrough curves generated at the 
spring (z = Z) from two classes of initial and boundary 
conditions. 

STEP INITIAL CONDITION AND ZERO 
BOUNDARy CONDITION

In this case, the initial concentration of solute in the con-the initial concentration of solute in the con- initial concentration of solute in the con-concentration of solute in the con-
duit is assumed to be a step function, i.e., 

and water entering the conduit at the sinkhole con-
tains no solute: CB(t) = 0. Equation (10) is an idealization 
of contaminant hotspot. Substituting Equation (10) into 
(9) and evaluating the result at the spring yields 

where

 

for i = 1, 2. This breakthrough curve is plotted in 
Fig. 2. Water containing solute that is initially at z = z2 ar-
rives at the spring first and is relatively undiluted, while 
water that travels farther experiences greater dilution, 
so that the concentration at the spring decays with time. 
Since longitudinal dispersion has been ignored, there is 
no spreading in the breakthrough curve. 

GUANGQUAN LI & HONG LIU
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APPLICATION AND LIMITATION

This section focuses on the extraction of information 
regarding geometry and flow of a conduit from analysis 
of the breakthrough curve, employing the solution devel-
oped above.

Referring to the solution in Equation (14) and to 
Fig. 3, the peak concentration of solute at the spring, Cp, 
relative to that entering at the sinkhole is given by 

where Q0 and QS are the water fluxes at the sinkhole 
and the spring, respectively. 

Substituting Equation (15) into (8), it follows that

 

Substituting Equation (16) into (3) gives 

which can be used to estimate the specific seepage 
from the matrix into the conduit. On a related note, it is 
necessary to know the travel time t. Noting , 
Equations (15) and (16) may be combined to estimate the 
conduit length:

There are two ways to get the ratio Cp/C0, or Q0/QS. 
The first is to chemically measure the peak concentration 
of a long-persisting tracer rich in surface water but 

ZERO INITIAL CONDITION AND STEP 
BOUNDARy CONDITION

In this case, the conduit initially contains no solute, i.e., 
CI(z) = 0, and a pulse of solute enters the conduit at the 
sinkhole uniformly over a prescribed interval of time:

Substituting Equation (13) into (9) yields 

fig. 2: Spring breakthrough 
curve generated by solute hotspot 
preexisting in a conduit (no 
solute enters from the sinkhole). 

fig. 3: Spring breakthrough curve 
generated by a rectangular pulse 
of solute introduced from the 
sinkhole (the conduit is initially 
solute-free). 

where t is given by (8). As can be seen in Fig. 3, 
this breakthrough curve is the result of a simple binary 
mixing between conduit water and matrix water. In con- In con-In con-n con-
trast to the first example, the solute concentration at the 
spring is constant. 

AN ADVECTION–DILUTION MODEL TO ESTIMATE CONDUIT GEOMETRy AND FLOW
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devoid in matrix water, while the second is to physically 
measure the water fluxes at the sinkhole and spring. The 
travel time t from sinkhole to spring can be measured 
by a dye tracing experiment. Thus these two quantities 
can be entered into the model to calculate the seepage 
flux and the conduit length via Equations (17) and (18), 
respectively. This approach does not require dealing with 
dispersion. 

A REAL WORLD ExAMPLE
The results given above can be applied to extract 
information about conduit geometry and flow. To 
demonstrate this, a dye tracing experiment conducted 
by Davies et al. (2004) in the Woodville Karst Plain, 
Northwest Florida, USA, is chosen. Conduits in this 
plain are phreatic, as the plain is very close to the coast 
of the Gulf of Mexico. In the dye tracing experiment, 
dye traveled from Ames Sink to Wakulla Spring, for a 
straight-line distance of 9.3 km after 528 hours (Dav-Dav-
ies et al. 2004). Allowing for an estimated tortuosity 1.3 
(Li 2012), the actual traveling distance is approximately 
12 km. The conduit radius ranges from 1 to 15 m and 
the spring discharge ranges from 5 to 20 m3/s (Davies 
et al. 2004). The recharge to Ames Sink is estimated to 
be 0.01 m3/s (Kincaid 2004). Thus the conduit radius and 
matrix seepage are calculated through Equations (17) 
and (18); see Tab. 1. 

Essentially, this approach to estimate the parameters 
of a conduit inputs the time of the peak concentration 

on the breakthrough curve from dye tracing experiment 
into our advection-dilution model. (The peak amplitude 
on the breakthrough curve from dye tracing experiment 
can never be used into our model, for conduit dispersion 
invariably decreases it significantly). This approach 
is based upon the fact that the time of the peak 
concentration is not sensitive to dispersion; see Fig. 2, Li 
& Loper (2011). 

To test validation of the uniform-conduit assum-
ption, we now divide the conduit into two segments with 
different radius. Assume the radius radio between the 
upstream segment and the downstream segment, k = 0.7, 

we use the transport time in the whole conduit t, the 
total length of the conduit Z, the sinkhole recharge Q0 
and the spring discharge QS, to calculate the radius of the 
upstream segment and the velocity of the seepage from 
matrix into conduit (refer to Appendix C). The result 
is listed also in Tab. 1. With the radius ratio being 0.7, 
the cross-sectional area of the downstream segment is 
double that of the upstream segment. Though the cross-
section varies significantly, the resulting seepage velocity 
only changes a little. Therefore, the seepage velocity is 
not sensitive to the variation of conduit cross-section 
and the uniform-radius model is reliable.

THE ROLE OF DISPERSION
Releasing a tracer with a step function of time into a 
sinkhole, the spreading length can be estimated as 

 (see Figure 10.6.1, Bear 1972, p. 628), wherein 
Dc is dispersion in the conduit. Assuming Dc~aW (i.e., 
conduit dispersivity is scale–variant and of the same or-
der as conduit radius.) and inserting t~Z/W, it follows 
that . Thus the spreading time in the break-
through curve is . This spreading can 
be neglected when and only when

where τc is the duration of injection, and Lp = Wτc 
is the length scale of the plume. Therefore, as the con-
duit length Z increases, dispersion shall not be ignorable. 

Only for release of a long 
solute pulse (large τc) at the 
sinkhole, or very small a or 
Z, conduit dispersion may be 
neglected. 

The Peclet number is 
defined as , 
being widely used to quantify 
the ratio between advection 
and dispersion at a certain 
distance (Bear 1972). It is 
worth noting that a large 

Peclet number only states that dispersion may be neglect-neglect-
ed at that distance, but in no way necessarily assures that 
dispersion can be ignored in the transport process from 
the sinkhole to the spring. Taking dye tracing experiments 
as example, it is not recommended to neglect dispersion. 
Inequality (19) suggests how long the solute should last 
(or how short the domain should be) such that the above 
dispersion–free model can behave well. 

Inequality (19) can be rewritten as

tab. 1: parameters of geometry and flow of the major conduit from Ames Sink to Wakulla Spring, 
Northwest florida. Numbers with * present calculated values.

Parameter Value Units
Uniform conduit Two segments

Conduit length, Z 12 12 km
Travel time, T 528 528 hour
Spring discharge, QS 10 10 m3/s
Water flux at sinkhole, Q0 0.01 0.01 m3/s
Conduit radius, a 8.54* 7.54*, 10.8* m
Specific water flux across wall, q 0.0155* 0.0145* mm/s

GUANGQUAN LI & HONG LIU
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DISCUSSION

Conduit flow in a karst aquifer is often a combination of 
water entering at a sinkhole or doline and water released 
from the surrounding limestone matrix. Contaminants 
can enter a conduit with the sinkhole recharge and will 
be diluted by the uncontaminated seepage from the 
matrix. This advection–dilution process has been solved 
analytically using the method of characteristics and the 
solution is presented in Equation (9). Without conduit 
dispersion, there is no spreading in the shape of spring 
breakthrough curves; see Fig. 2 and 3. 

The issue whether dispersion can be neglected or 
not depends on whether it is evaluated locally or globally. 
The former refers to solute transporting over a length 
scale of the solute plume, while the latter refers to solute 
transporting over the conduit length. The latter is more 
rigorous than the former. Li et al. (2010) analyzed the 
former and got  as a sufficient and necessary con-
dition for neglecting dispersion locally. That inequality 

can be rewritten as , being more accurate 

than the traditional condition,  . In this paper we are 
further concerned with the global ignorability of disper-
sion (a stricter condition), and inequality (19) is offered 
as a sufficient criteria for assessment of the applicability 
of the model in this paper. 

Numerical simulation often suffers from a notorious 
problem that it cannot accurately simulate the transport 
of contaminant plume near the sharp edge of the 
plume. This is because when the Peclet number is large, 
dispersion is small with respect to advection, such that 
undesired numerical dispersion will become dominant 
to decrease the accuracy of numerical solutions, even 
causing unphysical numerical oscillations. In that case, 
very fine grids would have to be adopted to guarantee a 
small cell Reynolds number (Thomas 1995) such that a 
realistic solution can be obtained. Sun (1989) has drawn 
a similar conclusion that when dispersion is very small, 
it is better to adopt particle–tracking method (ignoring 
dispersion) to simulate transport. 

Supposing Lp ≤ Z, it is evident that only at very 
large Peclet number (i.e., pe ≥ 10000), dispersion can 
be neglected with respect to advection. This value is far 
larger than any Peclet numbers ever observed for conduit 
flows in karstic aquifers. Therefore, it is concluded that 
our model is generally not applicable to transport in a 
real conduit. The only hope for application of this model 
is under an extreme condition that the duration of solute 

injection must be very long, or equivalently Lp >> Z. As 
a reminder, the above condition is a very conservative 
(sufficient) one, because it is based upon a rectangular 
tracer pulse injected at sinkhole. In practice, a natural 
solute at sinkhole may have a much more gradual shape, 
rather than a sharp rectangle, which has been analyzed 
in Li et al. (2010). 

CONCLUSIONS

In this paper, an analytical solution to dilution of a con-an analytical solution to dilution of a con-
servative contaminant in a conduit due to water infi l- water infi l-water infil-
trating from the surrounding limestone (referred to as 
seepage) is presented. The main assumptions involved 
in the model include –1) there is negligible dispersive 
transport in the conduit; 2) the conduit radius is uni-2) the conduit radius is uni-) the conduit radius is uni-conduit radius is uni-uni-
form along the conduit; and 3) the seepage rate across 
the wall is uniform along the conduit. Th e fi rst assump-The fi rst assump-e first assump- assump-
tion limits the applicability of the model (e.g., unsuitable 
for dye tracing experiments in which dye is injected in-dye tracing experiments in which dye is injected in-in which dye is injected in-in-
stantaneously so that τc is too small to satisfy inequality 
(19)). Nevertheless, the model may be applicable to the 
case that contaminant is naturally introduced into a 

conduit by long-duration rainstorm events. The second 
assumption has been tested to be valid. The effect 
brought by the third assumption is unclear and may be a 
good topic for future study. 

The solutions presented by Li & Loper (2011) and 
Li (2011) considered advection, dilution and dispersion, 
but were approximate solutions. This paper presents the 
exact solution to a transport model only considering 
advection and dilution. Therefore, this model may be 
used as a benchmark. Scale analysis shows that for 
a rectangular injection at a sinkhole, inequality (19) 
provides a sufficient condition for neglecting conduit 
dispersion. Nonetheless, this inequality is conservative 

AN ADVECTION–DILUTION MODEL TO ESTIMATE CONDUIT GEOMETRy AND FLOW
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APPENDIx A

AN ADVECTION–DILUTION MODEL TO ESTIMATE CONDUIT GEOMETRy AND FLOW

This appendix contains a detailed derivation of solution (9). From the second and third terms of Equation (6), along 
the characteristic (refer to Fig. 1) we have

Integrating the two sides of Equation (A1) and using initial condition (4), we get

 

Inserting Equation (7) into (A2), it follows that 

Please note that the initial condition requires (see Fig. 1)

On the other hand, from the first and third terms of Equation (6), along the characteristic we have 

Integrating the two sides of Equation (A5) and using boundary condition (5) yield 

Inserting Equation (7) into (A6), it follows that

The boundary condition requires (see Fig. 1)

Equations (A3), (A4), (A7) and (A8) can be summarized as follows:



ACTA CARSOLOGICA 43/1 – 201498

This appendix presents a generalization of solution (9) to the case that water entering the conduit from the matrix 
contains solute (a production-value problem). The solution for this case has been presented by Li (2009). Since the 
mathematical problem is linear with respect to concentration, that solution can be superposed on solution (9); the 
complete solution is 

 

where CM is the solute concentration in the matrix, j(z, t) is the dimensionless specific flux of solute at the conduit wall, 
η is defined in Equation (7) and ZD is defined by

APPENDIx B

GUANGQUAN LI & HONG LIU

APPENDIx C

This appendix seeks how to calculate the radius and seepage velocity of a conduit consisting of two segments with 
different radius. First we suppose the conjunction is at the middle of the conduit and the radius ratio between the 
upstream segment and the downstream segment is k. The conduit discharge at the conjunction is denoted as Qm. Water 
mass conservation yields 

Dividing (C1) by (C2) yields 

Now we apply Equation (18) to the upstream segment and the downstream segment, which yields 

 

where t1 is the transport time within the upstream segment. Diving (C4) by (C5) yields 

 

Substituting (C3) into the above equation and solving for t1 yields

(1+k)QS

Q0+kQS
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AN ADVECTION–DILUTION MODEL TO ESTIMATE CONDUIT GEOMETRy AND FLOW

With t1 known, we substitute (C3) into (C4) to solve for the radius of the upstream segment. 

 

With a1 known, substituting (C3) into (C1) yields the seepage velocity 

 
k(QS− Q0)
π(1+k)Za1

In summary, (C7), (C8), and (C9) can yield the transport time within the upstream segment, the radius of the upstream 
segment, and the velocity of seepage from matrix into conduit. 


