FAULT DETERMINATION DUE TO SINKHOLE ARRAY ON LAR VALLEY, NORTHEAST OF TEHRAN (IRAN)

DOLOČANJE PRELOMOV NA PODLAGI RAZPOREDITVE POŽIRALNIKOV V DOLINI LAR, SEVEROVZHODNO OD TEHERANA (IRAN)

Ahmad KHORSANDI¹, Takao MIYATA²

Abstract
Ahmad Khorsandi & Takao Miyata: Fault determination due to sinkhole array on Lar valley, northeast of Tehran (Iran)
The main objective of this paper is to present an approach to identify active faults in karstic environments. This is achieved by a releasing relationship between sinkholes or dolines formation, array and active faults mechanism. In this research, Lar valley on the Northeast of Tehran, Capital of Iran was selected as a case study. The sinkholes array in the valley shows that their formation and location is influenced by active faults. As a result of active faults mechanism, a number of young and old dolines have been formed on north and south of the study area. According to Aerial Photographs, Satellite images and geological logs correlation three major active faults were distinguished in the study area specially under Lar dam structure. Two of the faults are elongated to the north and the one extends to the south, seven sinkholes were formed on faults. Based on the available evidences, it is assumed that the formation and array of dolines in the study area has been formed and controlled by active faults. Conversely, it is deduced that faults activity may be determined by sinkholes formation and array. This results may be applied for the similar cases of world’s karstic belt.

Key words: sinkhole array and formation, active fault determination, Lar valley, Iran.

INTRODUCTION

To understand the dolines formation which is affected by active faults mechanism, it is necessary to identify active faults on the basis of array formation of the Sinkholes.

In order to protect the areas with sinkhole formation we need to consider following cases:

¹ Power and Water Institute of Technology, Shahid Abaspor Street, Tehranpars, Tehran, Iran; e-mail: Khorsandi@pwit.ac.ir Tel. 9821 7310044, P. o. Box 16765-1719.
² Dept. of Earth and Planetary Sciences, Kobe University, Kobe, Japan; e-mail: miyata@kobe-u.ac.jp.

Received/Prejeto: .16.03.2006
There are a number of case studies that present strong evidences of the above mentioned list. Milanovic (1981) discussed of tectonic influence on dolines formation process, Rezai and Zamanian in 1988 demonstrated sinkholes array (260 sinkholes) that is formed by thrust fault. However, the influence of active faults is observed on karstification and hydrogeology regime in west of Sweden (Herold et al., 1988). Sustersic (2003) states which water collector of Dolines is controled by active faults crushed zone. A number of researches have stated active faults and tectonic affects on karstification and groundwater (Fazeli, 1988; Kenz, 1988; Edgell, 1993; Celik and Onsal, 1999; Maloszweki et al., 1999; Kusamayudha et al., 2000; Taylor and Howard, 2000; Fernandes and Rudolph, 2001; Clarke, 2003). Haydari et al. 2003, Amiri 2003, Sadati and Mohamadi 2003, observed for formation of many sinkholes (39) with different sizes on faults direction, in Hamadan plain, in northwest of Iran. The formation of sinkholes has led to many problems for farmland, irrigation systems, water wells and power electric generation. Dolines formation may also occur gradually or suddenly in urban area, this was observed in 1981 winter park sinkhole in Florida, which destroyed a large part of a city block, sent shock waves throughout the popular media (Edlane 1993). The objective of this paper is to demonstrate relationship between Lar valley sinkholes array and active faults. Since occurrence of sinkholes affected by active faults mechanism in urban area and plains causes a great deal of problems, it is important to study dolines in order to protect urban area and plain so that reduce cost of damages. In other hand, on basis of above experiences, determination of active faults and their locations is possible, that is important in seismology so that the information apply for buildings, urban area and other structures damage protection.

The case study of Lar valley sinkholes resulted in identification of active faults and their effect on formation of dolines. The results of this survey shows that, it is possible to estimate active faults and their location on basis of sinkholes situation along faults direction in world which their condition are similar.

LAR VALLEY SINKHOLES AND ACTIVE FAULTS CHARACTERISTIC

Lar region is located at northeast of Tehran city, Iran with E51°,35’ to E52°,00’, longitude and ; N35°,51’ to N36°,5’ latitude (Fig 1a). It is a large valley with an area of 724 km², which is in Alborz mountains, part of Alp-Himalyaan orogenic belt, that is located on world karstic belt. Mount Damavand with elevation of 5670 m and Lar river in the east part with elevation of 2460 m are respectively highest and lowest points of Lar valley.

Lar reservior dam which has been constructed in the east of study area has leakage since refilling the reservoir and few young dolines have been formed in lake deposits behind the dam (Asadi 1995).

Stratigraphic sequence of the study area is as follows:

Mezozoic: The Mezozoic in the study area is contained of Jurassic system which is the limestone (Lar limestone). It is a thin-bedded to massive which contains many karstic phenomena and is fractured by tectonic. The Lar formation is located in right and left bank of the Lar dam. (Figs 4 and 6).

Cenozoic: The Cenozoic includes Quaternary lava and alluvium. The lava is outcrops in the middel and left banks of the Lar dam (Figs 4,6). It is contained Trachyte andesite and Trachyte. The Alluvium is young, old and lake deposit (Figs 2,4,6) (Shahrabi and Sidi, 1984; Giahi, 1989). The age of alluvial is Holocene that deposited about 38500 years ago (late Plestocene) (Allenbach, 1966).

SINKHOLES OF THE LAR VALLEY

Nine sinkholes are developed in the sediments, which filled the Lar dam Lake banks (Figs 1b, 2,4,5,6). The array of the sinkholes is in the direction of E-W. Four of them are young, with a sharp outline (Figs 2,4,5), appeared during 1980-1989. Their diameters vary between 5-40 m and depths of 5-22 m. The ratio of diameter to depth was computed in the rang of 0.6 to 4 (Table 1).

The ancient sinkholes are Five having collapsed walls, which can be found on course-grain alluvial (Figs 2, 4,5). It is noted that the depth is considered by low, thus is due to the fact that collapsed wall sedimentation is deposited into hole (Table 1). The ancient sinkholes diameter is 5 to 80 m and their depth vary between 4 to 5 m, except S8 and S9 in Table 1.
LAR VALLEY FAULTS
The Lar Valley fault elongated from the Lar dam in east to the west of valley (Fig 1b). Its dimensions extend, about 27 km long and 15 km wide. However the study area was selected 5 km long and 3 km wide due to the existence of the faults and sinkholes. Many information of the faults extent observed on base of airphotograph, satellite images, excavation data and boreholes geological logs corelations.

Lar valley airphotograph and Satellite images study delineate f1 and f2 faults (fig 1b).

Geotechnical and Engineering Geology surveys of gallery and boreholes in the Lar limestone distingushed many faults and karst phenomena (i.e cave, gallery,....) (Tehran Water Org., 1976; Giahi, 1989). The study of Lar formation (Jurassic) excavations shows that it has a thickness from the surface to 140 m below, and there after karaj formation (Eocene) is observed, which are good evidences to prove the existance of F4 thrust fault in lar valley (Fig 1b and 6). A big cave was also observed in 105-106 m deep. In borehole from one of the galleries,13 caves were observed in 240 m depth,which is a good evidence on the existance of the fault and its influence on karstification. In boreholes from two galleries, erosion and crushing are evident which prove existance of fault.

In this research many boreholes were selected along the Lar dam axis. (Fig 3) Correlation of boreholes geological log has distingushed three active faults and their mechanism (F2, F3 and FB in Fig 3).

Three types of faults are mainly determined in the study area and their around , normal, reverse and thrust faults.

Normal faults are principally elongated in three directions namely NW-SE, NE-SW and N-S, they are located in the south and northeast of the valley. Reverse faults have NW-SE direction and dip strike toward NE. These are located at southwest of the Lar valley. Thrust faults are directed NW-SE with dip strike toward NE which are located in the south of valley. Further information about faults were also obtained from the study area that are discussed here.
FB fault is located between the B1 84 and B1 91 boreholes (Fig. 3) which displaced the lava about 40 m high. It is normal and active fault. F1 fault is located between B1 125 and B1 126 borehole (Fig. 3), it displaces natural drainage system and changes the geologic features of lava (i.e. color, composition and thickness of the lava). It is strike-slip and active fault which has 11 km long. The width of crushed zone is 50-10 cm and two ancient sinkholes were formed along that F3 fault is normal with 8 km long, which passes under Lar dam foundation, it displaces Lava 20 m high (Fig. 3). This is active and three young sinkholes were formed along that (Figs. 1b, 4 and 6).

The F4 fault is located in south of Lar valley, two old sinkholes are located along that (Figs. 1b and 6). It is

Tab.1: Characters of existing sinkholes of Lra valley.

<table>
<thead>
<tr>
<th>No</th>
<th>Symbol</th>
<th>Geographical Cox</th>
<th>Geological Formation</th>
<th>Location</th>
<th>Diameter-Depth</th>
<th>Date of formation</th>
<th>Fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S1</td>
<td>51, 59.5-35, 55.5</td>
<td>Lake Deosit</td>
<td>Lar, Dalichai across</td>
<td></td>
<td>Ancient</td>
<td>Dalichai fault</td>
</tr>
<tr>
<td>2</td>
<td>S2</td>
<td>51, 59.5-35, 54.7</td>
<td>Lake Deosit</td>
<td>// //</td>
<td>Dia.=10 m</td>
<td>1980</td>
<td>Dalichai, F3 fault</td>
</tr>
<tr>
<td>3</td>
<td>S3</td>
<td>52, 58.7-35, 54</td>
<td>Alluvial, lake Deposit</td>
<td>Nw of Dam</td>
<td>Dia.=5 m Depth=22 m</td>
<td>Ancient</td>
<td>F3 fault</td>
</tr>
<tr>
<td>4</td>
<td>S4</td>
<td>51, 58.7-35, 54</td>
<td>Alluvial, lake Deposit</td>
<td>Nw of Dam</td>
<td>Dia.=13 m Depth=23 m</td>
<td>1988</td>
<td>F3 fault</td>
</tr>
<tr>
<td>5</td>
<td>S5</td>
<td>51, 57.7-35, 54.5</td>
<td>Alluvial, lake Deposit</td>
<td>Nw of Dam</td>
<td>Dia=5 m Depth=18 m</td>
<td>1988</td>
<td>F3 fault</td>
</tr>
<tr>
<td>6</td>
<td>S6</td>
<td>51, 57-35, 54.9</td>
<td>Alluvial, lake Deposit</td>
<td>Nw of Dam</td>
<td>Dia=80 m Depth=4 m</td>
<td>Ancient</td>
<td>F3 fault</td>
</tr>
<tr>
<td>7</td>
<td>S7</td>
<td>51, 57.1-35, 54.8</td>
<td>Alluvial, lake Deposit</td>
<td>Nw of Dam</td>
<td>Dia=40 m Depth=10 m</td>
<td>1989</td>
<td>F3 fault</td>
</tr>
<tr>
<td>8,9</td>
<td>S8, S9</td>
<td>51, 57-35, 53.5</td>
<td>Alluvial</td>
<td>Sw of Dam</td>
<td></td>
<td></td>
<td>Ancient</td>
</tr>
</tbody>
</table>

Fig. 4: Photo of sinkholes around Lar dam. AS is ancient sinkhole and YS is young sinkhole that assumed, their array influenced by the F3 fault.

Fig. 5: Photo of young sinkhole containing lake deposit and alluvial.

FB fault is located between the B1 84 and B1 91 boreholes (Fig. 3) which displaced the lava about 40 m high. It is normal and active fault. F1 fault is located between B1 125 and B1 126 borehole (Fig. 3), it displaces natural drainage system and changes the geologic features of lava (i.e. color, composition and thickness of the lava). It is strike-slip and active fault which has 11 km long. The width of crushed zone is 50-10 cm and two ancient sinkholes were formed along that F3 fault is normal with 8 km long, which passes under Lar dam foundation, it displaces Lava 20 m high (Fig. 3). This is active and three young sinkholes were formed along that (Figs. 1b, 4 and 6).
Fig. 6: Schematic diagrams illustrating the relationship between sinkholes and the F3 fault. Jurassic limestone; Lava is the Andesite and Trachyandesite.

DISCUSSION

Finding and determining the active faults is an important topic in earth sciences. It is possible to determine them in karstic environment due to dolines array along faults in recent alluvial, where the fault is covered by alluvial. The conclusion of research in Lar valley, distinguished that some old and young Sinkholes are formed by faults mechanisms in recent alluvial and lakes sediments. Since dolines are formed in the direction of faults, this, in turns may be strong evidence of faults Activity (USBR 1978). Active and capable faults of the study area are F1, F2, F3, F4 and Fb. These faults were characterized by study of aerial photogaphs, satellite images, and excavation data and geological log correlation. Furthermore, several karstic phenomenas i.e caves, cavities and galleries have been formed in Lar limestone depths where they are superimposed on crushed zone and faults direction. Thus, the most appropriate guideline for primary identification of active faults in karstic environments is the presence of sinkholes array there are other methods to identify active faults underground. These methods are geoelectric, geoseismic, GPR, trench, borehole excavation, well logging and groundwater surface anomaly study. However here are some problems with applying these methods for active faults finding. Griffiths (1986) stated that geoelectric method requires high anomaly around faults. Geoseismic method makes interpretation of fault identification very hard and may not be quite right. In GPR method, the depth of the fault should not exceed 50 m (Miyata 1999), while trench and borehole excavation as well as logging methods require a fair knowledge of location and depth of fault. In fact, these methods are complementary for faults identification which may be costly and more often are not able to determine active faults. Groundwaters level anomaly needs continuous monitoring of groundwater level variation which may be applied in alluvial plains (Sarvar 2005).
REFERENCES CITED

Allenbach, P., 1966: Geology and Petrography Dama- vand and Central Alborz, Iran. Mittei Lungen Nr 63 Geologieches Institute. ETH. Zurich

Celik, M. & N. Onsal, 1999: Grounwater Circulation In the allochthonous Limestone Unite Between Lake Gridev and Kaxanplnarl Spring, Antallya, Southwestern Turkey. V.7. n.5. Springer Hydrogeology journal. p. 483-489

Griffiths, Dh., 1986: Applied Geophysics for Geologists & Engineers, Translated to Persian

Sarvar, A., 2005: Study on Caspian fault impact on Groundwater Physical and Chemical Properties at Sari to Gorgan ,in North of Iran (Persian).

Šušteršič, F., 2003: Collapse Dolines, Deflector Fault and Collector Channels. The Virtual scientific Journal

