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Cueva de las Velas je zadnja odkrita jama na nivoju -290 v rud-
niku Naica. Votlina je je v začetku leta 2005 presekala rudniško 
galerijo. Ena od zanimivosti jame je razširjenost diagenetski� 
mineralov, ki na debelo odloženi na jamski� stena� pred raz-
vojem kristalov sadre. Te obloge so iz kompleksni�, le redko 
kristaliozirani� železo-mangano-svinčevi� �idroksidov s 
prisotnostjo karbonatov, sulfatov in silikatov. Rast ostali�, v 
glavnem sulfatni� mineralov, se je začela takoj po odvodnjavan-
ju tega dela rudnika pred 20 leti. Do sedaj smo našli 17 različni� 
mineralov, od kateri� je pet taki�, ki so bili prvič najdeni v 
jamskem okolju. Raziskave te� mineralov, so poleg prisotnosti 
povsem novi� vrst kristalov sadre, omogočile nova spoznanja 
o speleogenezi te jame. Ta je verjetno precej bolj kompleksna 
od geneze ostali� jam na tem nivoju (-290), saj so ji botrovali 
različni speleogenetski me�anizmi, kot npr. termalna korozija, 
neravnotežje sistema sadra/an�idrit, delovanje različni� kislin, 
ter kapilarna migracija in iz�lapevanje.
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Abstract  UDC  552.54:551.44(72)
Paolo Forti, Ermanno Galli & Antonio Rossi: The mineralogi
cal study on the Cueva de Las Vegas (Naica, Mexico)
The Cueva de las Velas is t�e last cave unveiled at -290 level 
wit�in t�e Naica Mine; t�e cavity �as been intercepted by a 
mine gallery at t�e beginning of 2005. One of its peculiarities is 
t�e widespread t�ick deposits of diagenetic minerals deposited 
over t�e cave walls before t�e beginning of t�e evolution of t�e 
giant gypsum crystals. These deposits consist of complex, often 
scarcely crystalline iron-manganese-lead oxides-�ydroxides, 
but carbonates, sulp�ates and silicates are also present. Ot�er 
minerals, mainly sulp�ates, started developing just after t�is 
area of t�e mine was dewatered some 20 years ago. Presently 
17 different minerals �ave been observed, 5 of w�ic� (orien-
tite, starkeyite, szmolnokite, szmikite and woodruffite) are 
completely new for t�e cavern environment. The study of t�ese 
minerals, toget�er wit� t�e presence of a completely new type 
of gypsum crystals, allowed to improve t�e knowledge on t�e 
speleogenetic evolution of t�is cave, w�ic� seems to be by far 
more complex t�an t�at of t�e ot�er cavity of t�e -290 level.
Its complexity is reflected by t�e activity of a larger number of 
different speleogenetic mec�anisms. Among t�em are wort� 
of mention t�e t�ermal corrosion/dissolution, t�e an�ydrite-
gypsum disequilibrium, t�e acid aggression, and t�e capillary 
migration and evaporation. 
Keywords: Mine caves, cave minerals, speleogenetic mec�a-
nisms, Mexico.
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The systematic study of “mine caves” �as emp�asized t�e 
�ig� scientific interest of t�e minerogenetic processes 
active t�erein (De Waele & Naseddu, 2005; Forti et al., 
2005).

Fig. 2: General view of the giant gypsum crystals (caver for scale) 
(photo Archive Speleoresearch & film and La Venta Exploring 
team).

INTRODUCTION

From t�is point of view, t�e natural cavities crossed 
by mine galleries in Naica (C�i�ua�ua, Mexico) (Fig. 1) 
�ave been world renowned for over a century, due to t�e 
dimension and purity of t�eir gypsum crystals (Hill & 

Forti, 1997) (Fig.2). 
Beside Cueva de las Espadas 

(Swords cave), unveiled at t�e be-
ginning of t�e 20t� century at t�e 
-120 level, w�ere crystals up to 
2 meters in lengt� exist (Degou-
tin, 1912; Fos�ag, 1927). In t�e 
last 5-6 years mine galleries at 
t�e -290 level �ave intercepted 
several natural cavities, t�e most 
important of w�ic� are Cueva de 
los Cristales (Crystal Cave), Ojo 
de la Reina (Queen’s Cave) (S�an-
gun, 2001) and Cueva de las Ve-
las (Sails Cave) (Fig. 3). All t�ese 
caves �ost gypsum crystals muc� 
bigger t�at t�ose in t�e Cave of 
t�e Swords, but t�ere are many 
ot�er features wort�y of study 
(Forti, 2006).

The Cueva de las Velas is t�e 
latest large mine cave found at 
Naica. This cavity was intercepted 
in 2005 and it was explored and 
mapped by La Venta Exploring 
Team in April 2006 (Badino & 
Forti, 2007). 

The cave, w�ic� �as a total 
lengt� of about 80 m, is oriented 

nort�-sout� and consists of two main large rooms par-
tially superimposed (Fig. 3). The average �ig� of t�e 
c�ambers is 3-4 m, w�ile t�eir widt� is often over 10 m. 

Cueva de las Velas immediately proved to be ex-
tremely interesting due to peculiarity of t�e �osted c�em-
ical deposits. W�at makes t�is cavity absolutely special is 
t�e presence of many small, t�in and very delicate spe-
leot�ems (t�e sails), developed on top of t�e gypsum 
crystals in t�e upper room of t�e cave (Fig. 4) (Bernabei 
et al., 2006), but t�is is not t�e single peculiarity of Cueva 
de la Velas. In fact it is t�e single cavity in w�ic� most of 
t�e carbonate rock, w�et�er covered or not by gypsum 
crystals, is overlain by a t�ick (up to 20-50 cm) deposit 
of metallic oxides-�ydroxides (Fig. 5). These deposits are 
muc� more frequent and t�ick in t�e lower room, w�ic� 
t�erefore ex�ibits a muc� darker aspect. 

The present study is focused on t�e minerals of 
t�ese deposits and it is a part of a general researc� project 

Fig. 1: Sketch of the Naica mine with the locations of the main 
natural cavities: on the right the stratigraphic sequence as derived 
by a 1150 m long drilling (after Badino & Forti, 2007, modified).
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Fig. 4: A characteristic gypsum crystal (called “vela”, sail), which 
gave the name to the Cueva de las Velas (photo Archivio La Venta 
& S/F).

Fig. 3: plan and vertical sections of the Cueva de 
las Velas with the sample locations.

w�ic� t�e owner of t�e mine, t�e Peñoles 
Company, decided to commit to La Venta 
Exploring Team from Italy and Speleo-
researc� & Films of Mexico City in 2006 
(Forti, 2006).

Fig. 5: A portion of the cave wall in which a thick deposit of 
metallic oxides-hydroxides are exposed (photo Archivio La Venta 
& S/F).

THE MINERALOGICAL STUDy ON THE CUEVA DE LAS VELAS (NAICA, MExICO)

ExPERIMENTAL OBSERVATIONS

The general geology, t�e structure and t�e ore evolution of 
Naica region is well known and documented (Stone, 1959; 
Megaw et al., 1988; Lang, 1995; García-Ruiz et al., 2007), 
t�erefore it would be useless to discuss t�em in detail.

The Naica mine opens on t�e nort�-western side 
of a 12 km long and 7 km wide dome-s�aped structure 
NW-SE oriented and affected by secondary foldings, 
faults and erosion.

This structure �as an average �eig�t of 1700 m 
above sea level and is formed, almost entirely, by calcare-

ous rocks (limestone, dolomitic limestone and carbonate 
dolostone) t�at �ave settled during a dozen million years, 
starting from t�e Albian (125 Myr BP).

The sulp�ides mineralization (Pb, Zn and Ag) �as 
formed due to �ydrot�ermal circulation, produced by 
tertiary dykes(26,2-25,9 My) some 3 km below t�e Naica 
surface. 

The structural control over t�e arrangement of t�e 
mineralized masses, t�e water circulation and t�e karst 
development was exerted by a system of faults and frac-
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Fig. 6: Limestone ceiling of the cave close to the entrance where 
small corrosion domes induced by acid aggression developed 
(photo Archivio La Venta & S/F).

Fig. 7: a) Lower surface of gypsum mega-crystals incrusted by a 
dark grey to reddish brown thin scarcely cemented powder; ESEm 
images: b) well formed transparent celestine crystals; c) toroidal 
grain of earthy milky white rozenite; d) whitish earthy hard 
aggregate of starkeyite; e) layered structure of thin films rich in 
rozenite and starkeyti. 
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tures, parallel to t�e longer axis of t�e dome, NW-SE 
oriented and dipping towards SW all t�e way to vertica-
lity (Fig. 1). Finally, t�e mining area is still under t�er-
mal anomaly: t�e water t�at spurts into t�e mine bottom 
reac�es a temperature close to 59°C. 

The morp�ology of t�e few parts of t�e Cueva de las 
Velas free of gypsum crystals s�ows t�at karst evolution 
was mainly controlled by bedding planes, w�ile, at least 
in one developing stage before t�e deposition of gypsum, 
acid aggression induced by sulp�ide oxidation was t�e 
main corrosion factor (Fig. 6). 

Nine samples were taken from seven spots in t�e 
wall of t�e cave w�ere t�e primary minerals �ave been 
transformed to give rise to alteration compounds: all of 
t�em were taken in t�e lower part of t�e caves w�ere t�e 
widespread lack of gypsum cover allows an easy c�oice 
(Fig. 3).

Four samples were obtained by scratc�ing t�e inner 
part of t�ree wall fractures in t�e mine gallery (spots 1, 2, 
3 of Fig. 3) w�ic� are clearly connected wit� t�e cave and 
in one fracture (spot 6 of Fig. 3) in t�e wall between low-
er and upper part of t�e cavity. Inside all t�ese fractures 
t�ere were clear evidences of active diagenesis, probably 
induced by �ydration and/or oxidation due to t�e pres-
ence of an atmosp�ere as a consequence of mine dewa-
tering since 17 years. All t�ese samples consist of rock 
fragments (calcite and/or dolomite 1 and 2; and gyp-
sum 3 and 6) covered by alteration material. One side of 
sample 1 is covered by a t�in film of sp�eroid aggregates 
of small scaleno�edral semitransparent calcite crystals, 
w�ic� are in turn partially covered by greyis� powder. 
The ot�er side is covered by a deposit of grey to reddis� 
eart�y material. Bot� sides of sample 2 are covered by 
t�in silver s�ining cauliflower s�aped very fragile blades, 
w�ic� loose t�eir s�ining and turn into eart�y coal black 

powder w�en scratc�ed. Bot� samples from spot 3 and 6 
consist of gypsum fragments covered by an eart�y deep 
grey, cinder like, powder very similar to t�at of sample 2 
even if wit� bigger grains. 

Because t�ese four samples �ave similar textural 
and structural c�aracteristics (t�in powder from w�ite to 
greyis� to pale brown) and evidenced similar mineral-
ogical composition, t�ey �ave been considered as a single 
sample, referred as Wf (wall fractures) in Table 1.

The ot�er five samples came from t�e t�ick black 
deposit underlying t�e gypsum crystals and were taken 
in t�e spots 4, 5, 7 of Fig. 3. All of t�em consist of black, 
s�ining black, red to reddis�-brown, eart�y yellow, some-
times partially cemented powder (Fig. 7a). Always inside 
t�e powder t�ere are several small transparent sub-mil-
limetric sized crystals. Due to t�eir rat�er constant mor-
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Tab. 1. Cave minerals of Cueva de Las Velas (Naica)

Sample type Mineral Chemical formula System Group Fig. No References1

Wf Anglesite PbSO4 Orth. Barite HB 5, 24

Wf - Bd Celestine SrSO4 Orth. “ 7b; 9f HB 5, 122

Wf Szmolnokite* FeSO4· H2O Mon. Kieserite HB 5, 688

Wf Kieserite MgSO4· H2O Mon. “ HB 5, 358

Wf Szmikite* MnSO4· H2O Mon. “ HB 5, 687

Wf - Bd Gypsum CaSO4· 2H2O Mon. 9e; 9f HB 5, 271

Wf Rozenite FeSO4· 4H2O Mon. Rozenite 7c, e HB 5, 602

Wf Starkeyite* MgSO4· 4H2O Mon. “ 7d, e HB 5, 663

Wf Jarosite K2Fe3+
6(SO4)4(OH)12 Trig. Alunite 8a HB 5, 330

Wf - Bd Calcite CaCO3 Trig. Calcite HB 5, 101

Wf Dolomite CaMg(CO3)2 Trig. Dolomite HB 5, 191

Wf - Bd Goethite α-Fe3+O(OH) Orth. 8d, e, f; 8e HB 3, 223

Wf Fluorite CaF2 Cub. HB 3, 205

Bd Coronadite Pb(Mn4+, Mn2+)8O16 Mon. Cryptomelane 9a, b, c, d, e, f HB 3, 138

Wf Woodruffite* ZnMn3O7· 2H2O Tetr. 8b HB 3, 606

 Bd Opal SiO2· nH2O Amor.

Wf Orientite* Ca2Mn2+Mn3+
2Si3O10(OH)4 Orth. 8c HB 2/2, 602

1 HB: Ant�ony et al. “Handbook of Mineralogy”, Volume, Page. 
* New cave mineral. 
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p�ology and mineralogical composition also t�ese sam-
ples �ave been considered as a single one and referred in 
t�e Table 1 as Bd (Black deposit). 

ExPERIMENTAL METHODS 
A detailed analysis of all t�e samples by t�e stereoscopic 
microscope was performed to distinguis� and to separate 
t�e different mineralogical p�ases present in eac� sam-
ple. Then t�e single p�ases were analysed by a powder 
diffractometer (P�ilips PW 1050/25), w�en t�e material 
was quantitatively enoug� and �omogeneous, or by a 
Gandolfi camera (Ø: 114.6 mm, exposition: 24/48 �rs), 
w�en t�e material was scarce or in�omogeneous. Always 
t�e experimental conditions were: 40Kv e 20 mA tube, 
CuKα Ni filtered radiation (λ = 1.5418 Å). 

Rat�er all t�e samples analyzed by Gandolfi camera 
were later used to obtain images and c�emical qualita-
tive analyses t�roug� an electron scanning microscope 
(ESEM FEI Quanta 200) wit� an electronic microprobe 
(EDS Oxford INCA 350) at t�e C.I.G.S. (Centro Interdi-

partimentale Grandi Strumenti) of t�e Modena and Reg-
gio Emilia University. 

ANALyTICAL RESULTS
The diagenetic minerals observed in t�e first group of 
samples (Wf) are by far t�e majority (see Tab. 1) and 
t�ey consist mainly of �ydrated sulp�ates, carbonates, 
oxides and silicates. Sample 1, and in particular its frac-
tion consisting of cinder grey eart�y material proved to 
be very interesting. In fact in t�is sample beside common 
cave minerals like celestine (Ant�ony et al., 2003c), one 
of t�e most abundant mineral w�ic� is present mainly 
as equant cross-section (Fig. 7b) but also as millimetric, 
perfectly transparent, well-formed lat�like crystals, tabu-
lar on {001} and anglesite (Ant�ony et al., 2003a), t�ere 
are also very rare �ydrated sulp�ates of Fe like szmolnok-
ite (Ant�ony et al., 2003m), and rozenite (Ant�ony et al., 
2003�), of Mg come kieserite (Ant�ony et al., 2003g), 
and starkeyite (Ant�ony et al., 2003i),) and of Mn like 
szmikite (Ant�ony et al., 2003l). Three of t�em (szmol-
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A few minerals (celestine, gypsum, calcite and goe-
t�ite) are common to bot� t�e sample types (Wf and Bd). 
Goet�ite (Ant�ony et al., 1997c), is by far t�e most com-
mon and widespread compound. It is normally scarcely 
crystalline and occurs normally as sub-millimetric par-
tially empty sp�eres. The outer part is reddis�-brown to 
black w�ile t�e inner part consist of eart�y red aggregates. 
The ESEM-EDS analyses evidenced t�e presence of tuffs 
of filaments consisting of a sequence of micro-sp�eres of 
different size w�ic� give rise to complex dendritic struc-
tures (Figgs. 8d, e, f): it is evident t�at goet�ite fossilized 
biogenic structures, probably t�ose responsible for t�e 
oxidation of t�e ore bodies.

Coronadite (Ant�ony et al., 1997a), is t�e most pe-
culiar and rare mineral of t�e Bd samples. This Pb and Mn 
oxides is rat�er common wit�in t�e Sout� America ore 
bodies even if it was rarely well-c�aracterized. Its name 
comes from t�e first Spanis� explorer of t�e American 

nokite, starkeyite and smikite) are new for t�e cavern 
environment. 

Rozenite (Fig. 7c) and starkeyite (Fig. 7d) are always 
deeply mixed toget�er giving rise to millimetre sized, 
eart�y, milky w�ite sp�eres wit� a cotton ball wrinkled 
surface. Bot� t�ese mineral are monocline and ex�ibit 
very similar crystallograp�ic constants (rozenite: ao = 
5.799 Å, bo = 13.650 Å; co = 7.977 Å, β = 90.43°; starkey-
ite: ao = 7.902 Å, bo = 13.594 Å; co = 5.920 Å, β = 90.89°). 
Their x-ray powder diffraction patterns are rat�er co-
incident because t�e t�ey are isostructural (Baur, 1960, 
1961; Jambor & Traill, 1963). Therefore t�eir identifica-
tion was possible only analysing t�e same samples of t�e 
Gandolfi camera by EDS microprobe on ESEM. Figure 
6e s�ows alternating bands respectively ric� in rozenite 
or in starkeyite.

It �as been extremely difficult also to identify t�e 
t�ree mono�ydrated sulp�ates szmolnokite (FeSO4·H2O), 
kieserite (MgSO4·H2O) and szmikite (MnSO4·H2O). 
They were undistinguis�able at t�e stereo-microscope, 
because all t�ese t�ree minerals give rise to small eart�y 
aggregates of micrometric crystals wit� slig�tly different 
colours (pale brown masses: szmolnokite; milky w�ite, 
greasy sp�eres: kieserite; botryoidal milky w�ite to pale 
pink masses: szmikite). Therir x-ray powder diffraction 
are very similar, because all t�e t�ree minerals belongs to 
t�e same group and �ave similar crystallograp�ic con-
stants (szmolnokite: ao = 7.624 Å, bo = 7.468 Å; co = 7.123 
Å, β = 115.9°; kieserite: ao = 7.511 Å, bo = 7.611 Å; co = 
6.921 Å, β = 116.17°; szmikite: ao = 7.766 Å, bo = 7.666 Å; 
co = 7.120 Å, β = 115.85°). Their identification was made 
by c�emical analyses performed on t�e same samples 
used for t�e x-ray diffraction: szmolnokite and szmikite 
proved to be very rare and �ave been identified surely 
only once, w�ile kieserite is muc� more abundant.

Jarosite, (Ant�ony et al., 2003f) t�e iron �ydroxyl-
sulp�ate belonging to t�e alunite group, is rat�er com-
mon as eart�y lemon yellow soft crumbly grains (Fig. 
8a) or as minutely crystalline crust over metallic grains 
over w�ic� often diagenetic calcite and dolomite may be 
found.

Woodruffite (Ant�ony et al., 1997d), a compound 
w�ic� is c�aracteristic of t�e oxidized zone of Ag-Pb-Zn 
deposits, �as been �ere reported for t�e first time as cave 
mineral. It is anyway very rare and it occurs as tuffs of t�in 
small, silver s�ining to old gold yellow, blades (Fig 8b).

The last of t�e five new cave minerals, orientite 
(Ant�ony et al., 1995), is a Mn and Ca �ydrous silicate 
present as t�in silver blades, w�ic� at �ig�er enlargement 
proved to be tuffs of t�in acicular crystals (Fig. 8c): it is 
always mixed to woodruffite and t�ey were found exclu-
sively in a small lens filling a crack of t�e sample taken in 
t�e wall fracture close to t�e spot 2.

Fig. 8: ESEm images: a) detail of a earthy lemon yellow globular 
aggregate of jarosite; b) thin emi-transparent tabular crystals of 
woodruffite; c) tuffs of acicular silver grey to gold shining orientite 
crystals; d) thin layer of goethite reddish-brown to dark grey 
micro-spheres: most of them are empty inside, clearly fossilizing 
biological masses; e) strange aggregate of goethite micro-spheres; 
f) detail of the structure of the goethite consisting of thin small 
blades resembling a wool skein.
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sout�west, Francisco Vasquez de Coronado. Coronadite 
was described as cave mineral only recently from a single 
cave, Santa Barbara mine cave, Italy (Forti et al., 2005). In 
Cuevas de las Velas it occurs as: a) radial aggregates (Fig. 
9a) of microscopic tabular blades wit� colour c�anging 
from s�ining gold yellow at t�e bottom to s�ining silver 
grey at t�e top; or b) as eart�y soft deep grey to reddis� 
material. At strong enlargement (Fig. 9b) t�e tabular 
blades of t�e radial aggregates consist of a t�ick network 
of t�in elongated iso-oriented micrometric crystals (Fig. 
9c), w�ile fibrous radial aggregates of prismatic crystals, 
far s�orter t�an t�e previous ones, constitute t�e eart�y 
material (Fig. 9d).

In a single sample it was possible to detect opal as small 
sp�eres often growing over t�e Fe- oxides-�ydroxides.

From paragenetic point of view no deposition se-
quence can be defined wit�in t�e Wf samples: it is t�ere-
fore �ig�ly probable t�at all t�e 15 different minerals are 
presently growing simultaneously.

On t�e contrary t�e Bd samples evidenced a clear 
depositional sequence. Goet�ite and coronadite are t�e 
more abundant and first deposited minerals, t�en opal 
and calcite started forming just w�en t�e deposition of 
t�e oxides was close to t�e end. After t�at eu�edral celes-
tine crystals started to develop t�us covering t�e pre-ex-
isting minerals. Finally w�en t�e deposition of celestine 
was over gypsum begun to form, later giving rise to t�e 
development of t�e giant gypsum crystals. 

DISCUSSION

From t�e mineralogical point of view t�e black deposits 
s�ow a far lower variability (6 minerals) if compared wit� 
t�at of t�e samples coming from t�e cave walls fractures 
(15 minerals). Moreover only two minerals are peculiar 
of t�e black deposits (coronadite and opal), w�ile t�e 
ot�er 4 are present also in t�e cave wall fractures. Among 
t�e six minerals of t�e black deposits 5 are very common: 
only coronadite may be considered a “rare” cave mineral, 
�aving been detected until now in a single cavern envi-
ronment (Forti et al., 2005).

The strong oxidation processes of t�e ore bodies 
are testified by t�e t�ickness of t�e black deposits and by 
t�e �uge amounts of biogenic structure fossilized inside 
t�em. Anyway t�e scarcity of mineral variability wit�in 
t�e black deposits are clearly a direct consequence of t�e 
fact t�at t�ese processes occurred wit�in a �uge t�ermal 
reservoir, w�ere no s�arp variation of pH, nor supersat-
uration wit� respect to soluble salts may be induced by 
oxidizing processes.

W�ile goet�ite and coronadite are direct products 
of t�ese processes, t�e opal formation was induced by a 
even scarce pH lowering caused by t�e oxidation of t�e 
H2S to H2SO4. Later, t�e increase of SO4

2- caused t�e su-
persaturation wit� respect to Celestine and after to gyp-
sum, t�us confirming t�e mineralogical sequence of Fig-
ure 9f. 

Finally calcite is always very rare and it is present as 
small aggregates of crystals wit� complex s�apes: its ori-
gin was likely controlled by variation in t�e activity of t�e 
biogenic masses ruling t�e oxidation of t�e ore bodies, 
w�ic� caused simultaneous variation in CO2 concentra-
tion wit�in t�e t�ermal water.

The number of minerals (15) present in t�e pow-
der scratc�ed from t�e cave wall and from its fractures is 
very �ig� and testifies t�e minerogenetic efficiency of t�e 
oxidation processes of t�e primary minerals, dispersed in 
t�e �ost rock, induced by t�e presence of an atmosp�ere. 
Unlikely to t�ose of occurred in t�e black deposits, t�e 
oxidation processes wit�in t�e wall fractures are abso-
lutely uncontrolled by microorganisms, and t�erefore no 
biomasses �ave been observed inside t�em. 

All t�e wall fracture reactions occur wit�in very 
small amount of condensation water, w�ic� is in turn 
subject to fast evaporation due to t�e forced ventilation 
of t�e mine. Therefore t�e supersaturation is reac�ed not 
only for low solubility sulp�ates like anglesite, celestine, 
jarosite and gypsum, but also for some very soluble com-
pound: it is t�e case of szmolnokite, kieserite, smikite, 
rozenite, and starkeyite. Moreover, in suc� an environ-
ment, t�e variation in t�e p�ysico-c�emical parameters 
is very �ig� and t�e pH often reac�es values close to 1 
or 0 (Forti & Salvatori, 1988; Forti & Mocc�iutti, 2004). 
This fact induces t�e deposition of minerals normally 
unstable in a cavern environment like jarosite.

In order to understand t�e deposition of rare and/or 
unusual minerals, anot�er point �as to be considered: t�e 
very s�ort time span since t�e different minerogenetic 
reactions were active (less t�an 20 years). This fact justify 
t�e presence of only two crystalline oxide (goet�ite and 
woodruffite), w�ile most of t�e iron and manganese is 
still in amorp�ous oxide-�ydroxides compounds. More-
over t�e scarcity of time �indered many elements (in par-
ticular iron and manganese) to reac� t�e �ig�est possible 
oxidation, t�us inducing t�e deposition of minerals in 

THE MINERALOGICAL STUDy ON THE CUEVA DE LAS VELAS (NAICA, MExICO)
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Fig. 9 – ESEm images: a) flower consisting of thin bended blades 
of coronadite, the color of which is gold yellow at the basis and 
shining silver on top; b) radial tuffs of small prismatic acicular 
crystals of coronadite; c) detail of a coronadite tuff showing the 
quadrate section of the prismatic crystals; d) detail of the earthy 
coronadite structure; e) transparent prismatic tabular celestine 
crystals with overgrowth of iso-oriented acicular gypsum crystals 
and goethite micro-spheres; f) Small opale cavity covered by 
filaments and micro-spheres of goethite on the left, and dendritic 
aggregates of coronadite on the right. 

w�ic� t�ese elements �ave a lower valence (i.e. szmol-
nokite, smirkite, rozenite, coronadite, orientite). 

The presence of calcite and, wit� a biogenic me-
diation, of dolomite is t�e normal consequence of CO2 

STAGES IN THE DEVELOPMENT OF THE CAVE

On t�e basis of t�e actual knowledge on t�e mineralogy 
of t�e Cueva de las Velas it is now possible to reconstruct 
t�e main evolutionary steps, t�e cavity underwent from 
its genesis up to t�e present days.

Its first stage of development, w�ic� must be clearly 
contemporary to t�at of t�e ot�er 3 caves of Naica, �as to 
be referred to t�ermal water uplift along t�e main faults, 
w�ic�, still now, are responsible for t�e water circulation 
inside t�e Naica structure. 

These faults partially displaced t�e mineral deposits 
and t�erefore t�ey are far younger t�an t�e ore bodies, 
w�ic� started to develop 26,2-25,9 My BP (Megaw et al., 
1988).

The existence inside t�e ore bodies of different kinds 
of fluid inclusion wit� temperature ranging from 680 to 
130°C (Erwood et al., 1979) suggest t�at, until t�e tem-

perature of t�e t�ermal fluids was �ig�, no karst void was 
developed: during all t�is period, in fact, t�e t�ermal 
fluids were in a condition of net deposition or at least 
of balance between deposition-corrosion processes, as 
confirmed by t�e scarcity and t�e small size of t�e open 
voids inside t�e mineral bodies. Surely t�e cooling down 
of t�e fluids lasted a very long time due to t�e fact t�at no 
external spring was related to t�em and t�e contribute of 
meteoric seepage scarce if any. 

After t�e end of ore bodies development tectonic 
movements took place causing t�e partial displacement 
of t�e mineral deposits: t�ese displacements were con-
trolled by t�e same faults w�ic� later allowed t�e water 
uplift w�ic� gave rise to t�e speleogenesis of t�e Naica 
caves and t�en t�e development of t�eir gigantic gypsum 
crystals.

PAOLO FORTI, ERMANNO GALLI & ANTONIO ROSSI

diffusion in a solution saturated wit� respect to gypsum 
(Forti et al., 2007; Vasconcelos et al., 1995).

Finally t�e fast evaporation of small volumes of 
water may be t�e cause of t�e deposition of fluorite, t�e 
fluorine ions coming from t�e widespread fluorite wit�in 
t�e mineralised masses. 

It is not possible to give a depositional c�ronology, 
like t�at obtained for t�e black deposits, for t�e samples 
scratc�ed from t�e cave walls: t�is because eac� powder 
grain is composed by a single mineral or, eventually, by 
t�e minerals of t�e same group.

It is �ig�ly probable t�at t�e number of t�e mineral 
actually forming wit�in t�e fractures of t�is cave s�ould 
be �ig�er, in fact a preliminary mineralogical analysis 
performed over a few scratc�ed samples from fractures 
of t�e Ojo de la Rejna cave (a few tens of meter far from 
Cueva de las Velas) evidenced t�e presence not only of 
several already observed minerals (gypsum, starkeyite, 
calcite, coronadite) but also of four new ones (bloedite, 
quartz, bassanite, and epsomite).



ACTA CARSOLOGICA 36/3 – 2007 387

Therefore t�e first stage of t�e karst development 
s�ould �ave started only a few millions years BP, w�en t�e 
c�aracteristics of t�e �ot waters, wit� temperatures lower 
t�an 130°C, allowed corrosion to prevail deposition.

This first stage of deep karst development was surely 
s�ort and t�e corrosion process not very effective: in fact, 
t�e presently known caves are small and always t�ey cor-
respond to scarcely widened fractures (Ojo de la Reina 
and Cueva de las Espadas) or bedding planes (Cueva de 
las Velas). 

After t�is first speleogenetic stage, w�ic� was com-
mon to all t�e 4 caves of Naica, t�eir evolution was slig�t-
ly different from eac� ot�er, depending on local factors.

Cueva de las Velas was interested by widespread oxi-
dation of sulp�ide minerals w�ic� were transformed into 
oxides-�ydroxides: t�is process was clearly controlled 
by micro-organisms, as testified by widespread biogenic 
structures preserved wit�in t�e deposits (Fig. 8d.e). 

During t�is stage, w�ile a t�ick black deposit cov-
ered t�e cave floor and most of its walls, t�e roof clearly 
underwent acid aggression as testified by t�e corrosion 
cupolas still visible in t�e first part of t�e cavity (Fig. 6).

During t�e latest stage of oxides-�ydroxides de-
position, t�e uplifting water became oversaturated wit� 
respect to celestine and, later, wit� respect to gypsum: 
t�is sequence is clearly recorded in t�e black deposit as 
s�own by ESEM-EDS (Fig. 9f).

The appearance of gypsum crystals is an indirect 
proof t�at t�e temperature of t�e t�ermal water reac�ed 
a value lower t�an 59°C, because above t�is value an�y-
drite s�ould be t�e single forming mineral (García-Ruiz 
et al., 2007).

W�en t�e sulp�ide oxidation was over, t�e devel-
opment of t�e giant gypsum crystals started: t�is pro-

cess was completely controlled by t�e an�ydrite-gyp-
sum equilibrium and t�e needed calcium sulp�ate was 
provided by t�e slow dissolution of t�e an�ydrite lenses 
widespread wit�in t�e �ost rock.

The existence of a lot of small gypsum crystals 
wit�in t�e black deposits, w�ic� acted as crystallization 
nuclei, justifies t�e fact t�at, despite t�e new nucleation 
probability was extremely low (García-Ruiz et al., 2007) 
Cueva de las Velas is t�e single cave of Naica in w�ic� 
only a few of giant crystals developed, w�ile most of its 
floor and walls are covered by a very �ig� number of rela-
tively small crystals (10-20 cm in size).

The gypsum deposition went on until, some 20 years 
ago, t�e mine exploitation caused t�e complete dewater-
ing of t�e cave: anyway t�is fact did not represent t�e end 
of t�e development of t�e cave, w�ic� was c�aracterized 
by two furt�er steps.

The first one started just during t�e dewatering of 
t�e cave giving rise to t�e sails (Bernabei et al., 2006), 
but it stopped immediately after t�e cave was completely 
dried.

The latest stage, w�ic� is still active now, was in-
duced by t�e presence of moist air, t�e condensation 
of w�ic� induced t�e diagenesis (oxidation) of some of 
t�e ore bodies exposed on t�e cave walls. This process, 
even extremely young and still in progress, allowed t�e 
development a large number of minerals, five of w�ic� 
are completely new for t�e cavern environment. Because 
t�is stage is induced by t�e direct contact between rock 
and air, it is �ig�ly probable t�at t�e same process is ac-
tive also in ot�er caves of t�e -290 level or even deeper 
wit�in t�e Naica Mine: next investigation will test suc� 
an �ypot�esis.

THE MINERALOGICAL STUDy ON THE CUEVA DE LAS VELAS (NAICA, MExICO)

The mineralogical study of t�e c�emical deposits of Cue-
va de las Velas wit�in t�e Naica mine �as evidenced t�e 
existence in t�e cave �istory of two distinct periods in 
w�ic� several cave minerals were deposited mainly due 
to t�e oxidation of t�e ore bodies. In t�e first one, w�ic� 
occurred deep inside t�e t�ermal aquifer before t�e dep-
osition of t�e giant gypsum crystals, a large quantity of 
material was deposited but, due to t�e scarce variability 
of suc� an environment, only a few minerals developed. 
The second one, w�ic� started under aerate conditions 
less t�an 20 years ago and it is still active now, induced 
t�e deposition of scarce material but wit� an extremely 
�ig� mineralogical variability.

From t�is point of view t�e Cueva de Las Velas is 
an extremely important cave because it represent a natu-

ral laboratory in w�ic� can be experimentally tested t�e 
boundary conditions for t�e development of several even 
extremely rare cave minerals.

Unfortunately t�is cave, as all of t�e ot�er karst 
p�enomena at t�e –290 level of Naica mine will remain 
visible only for a few years, and as soon as t�e mining 
activities will stop (an event t�at is expected wit�in 7-10 
years), t�e uplifting of groundwater will submerge t�em 
under some 170 m of water. It is t�erefore important 
t�at all t�e studies still in progress on Naica and its in-
credible mine caves will be completed in t�e s�ortest 
possible time in order to preserve for future generations 
at least a full knowledge of t�ese astonis�ing natural 
p�enomena. 

FINAL REMARKS
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