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snovi v kraškem vodonosniku
Za tok podzemne vode in prenos snovi v kraškem vodonosniku 
s kanali je bil razvit model sklopljenega toka v zveznem poro-
znem sredstvu in v ceve� (CCPF). Podzemni tok v kanali� je bil 
simuliran z modelom toka v cevi, tok skozi razpoklinsko matri-
co pa opisuje Darcyjev zakon. Masna izmenjava vode med dve-
ma domenama je bila modelirana z metodo �itrosti masne iz-
menjave prvega reda. V tej študiji smo preizkušali matematično 
dobro postavitev modela CCPF (matematični izraz, ki izraža 
obstoj rešitve in njeno edinstvenost), razvili dokončno osno-
vno metodo za numeričnen približek matematičnemu modelu 
ter proučili ujemanje z numerično metodo. Rezultati študije 
dokazujejo, da je modelarski pristop dobro postavljen in se 
numerično ujema. Da bi ugotovili natančnost modela CCPF, 
smo nedavno razviti Stokes-Darcyjev model (SD) in model 
CCPF primerjali z rezultati laboratorijskega eksperimenta. 
Ugotovljeno je bilo, da se simulacije modela SD dobro ujemajo 
z rezultati poskusa in da model CCPF precenjuje piezometrično 
višino v matrici, še posebej na območju meje med kanalom in 
matrico. Slednji model tudi podcenjuje prenos snovi v kanalu 
in se ne ujema dobro s porazdelitvijo koncentracij raztopine 
v matrici. V primerjavi z modelom SD za�teva CCPF dodatni 
parameter �itrost masne izmenjave prvega reda. Ta parameter 
pa navadno pridobimo z inverzno metodo prileganja krivulje. 
Metoda SD la�ko omogoči pristop k neposrednemu izračunu 
vrednosti tega parametra.
Ključne besede: kraški vodonosnik, sklopljen tok v zve-
znem poroznem sredstvu in v ceve�, Stokes-Darcyjev model, 
matematično dobra postavitev modela, �itrost masne izme-
njave.

1 Department of Eart�, Ocean and Atmosp�eric Sciences, Florida State University, Talla�assee, FL 32306, USA,  
e-mail: �u@gly.fsu.edu

Received/Prejeto: 16.10.2009

COBISS: 1.01

ACTA CARSOLOGICA 39/2, 347–359, POSTOJNA 2010

Abstract UDC  556.33
Bill X. Hu: Examining a Coupled Continuum Pipe-Flow 
Model for Groundwater Flow and Solute Transport in a Karst 
aquifer
A coupled continuum pipe-flow (CCPF) model �as been de-
veloped for groundwater flow and solute transport in a karst 
aquifer wit� conduits. Groundwater flow in conduits is simu-
lated t�roug� a pipe flow model and flow in fissured matrix 
rock is described by Darcy’s law. Water mass exc�ange between 
t�e two domains is modeled by a first-order exc�ange rate 
met�od. In t�is study, we investigate mat�ematical well-posed-
ness (mat�ematical term, w�ic� means solution existence and 
uniqueness) of t�e CCPF model, develop a finite elementary 
met�od to numerically approximate t�e mat�ematical model 
and study t�e convergence of t�e numerical met�od. The study 
results prove t�e modeling approac� is mat�ematically well 
posed and numerically converged. To study t�e accuracy of t�e 
CCPF model, a recently developed Stokes-Darcy (SD) model 
and CCPF model are compared wit� laboratory experimental 
results. It was found t�at t�e SD model simulations matc� well 
wit� experimental results, but t�e CCPF model overestimates 
t�e �ydraulic �ead in t�e matrix, especially around t�e matrix 
and conduit interface. The model underestimates solute trans-
port in t�e conduit and does not capture t�e plume distribution 
in t�e matrix. In comparison wit� t�e SD model, t�e CCPF 
model requires an additional parameter, t�e first-order mass 
exc�ange rate, and t�e parameter is normally obtained t�roug� 
inverse met�od curve fitting. The SD met�od may provide an 
approac� to directly estimate t�e parameter value. 
Keywords: karst aquifer, continuum pipe-flow model, Stokes-
Darcy model, mat�ematical well-posedness, mass exc�ange 
rate.
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Karst aquifers supply about 25% of t�e world population 
wit� water (Ford & Williams 1989), including nearly all 
t�e drinking water to certain regions, e.g., 90% of Flori-
da’s drinking water (Paulson et al. 1990). The presence 
of conduits is unique to karst aquifers. P�reatic conduits 
are connected, water-saturated tubes located below t�e 
water table. These conduits largely control groundwater 
flow and contaminant transport wit�in t�e aquifer (Katz 
et al. 1998). The water-saturated matrix rock surround-
ing t�e conduits comprises most of t�e aquifer volume 
and �ence most of t�e storage (Wort�ington 2007). It �as 
been observed in field sites t�at during a �ig�-flow event, 
t�e water pressure in t�e conduits is larger t�an t�at in 
t�e ambient matrix so t�at conduit-borne contaminants 
can be driven into t�e matrix. During a low-flow event, 
t�e pressure differential reverses and contaminants se-
questered in t�e matrix can be released into t�e free flow 
in t�e conduits and exit t�roug� springs into surface 
water systems (e.g., Martin & Dean 1999, 2001; Li et al. 
2008). This retention and release p�enomenon induces 
an environmental issue in t�at sequestered contaminants 
may influence t�e quality of underground water sources 
for a long time and t�us significantly decrease quality wa-
ter availability.  

The dual c�aracter of a karst flow system is widely 
recognized and stems from t�e existence of different po-
rosities wit�in a karst aquifer (Ford 2003; Wort�ington 
2003). The porosity difference determines t�e type of 
flow prevailing in t�e aquifer (Ford & William 1989; Bau-
er et al. 2000). Similar to t�e dual-porosity/permeability 
model widely used for fractured media (e.g., Gerke & 
van Genuc�ten 1993a, b), t�e coupled continuum pipe-
flow (CCPF) model �as been proposed to describe t�e 
flow and solute transport in karst aquifers (C�en & Bian 
1988; Macquarrie & Sidicky 1996; Kiraly 1998; Bauer et 
al. 2000, 2003; Taylor & Greene 2001; Birk et al. 2003). 
The CCPF model is a dual flow system consisting of a 
matrix representing t�e bulk mass of permeable lime-
stone and a conduit system representing t�e karst con-
duit network. Flow exc�ange between t�e two systems 
is controlled by differences in �ydraulic �eads as well as 
t�e �ydraulic conductivity and t�e geometric setting. In 
t�e CCPF model, groundwater flow in t�e matrix is de-
scribed by Darcy’s law, and flow in t�e conduit is mod-
eled by a pipe-flow model. The water mass exc�ange flow 

rate between t�e two systems, qex, is described by a first-
order mass exc�ange model. The exc�ange flow rate is as-
sumed to be linearly proportional to t�e �ead difference 
between t�e two systems (Barenblatt et al. 1960; Cao et 
al. 1988; Sauter 1992; Teutsc� 1989). The exc�ange rate 
coefficient is a lumped parameter.  Its value will depend 
on many factors including: �ydraulic conductivity in t�e 
matrix, t�e exc�ange surface between t�e conduit and 
matrix, and conduit geometry (Barenblatt et al. 1960; 
Liedl et al. 2003). The value of t�e exc�ange rate parame-
ter is not usually obtained from measurements but rat�er 
t�roug� curve-fitting. Based on t�e CCPF model, a new 
numerical met�od �as been developed and �as become 
part of t�e new MODFLOW software (S�oemaker et al. 
2008). However, t�e suitability and validity of t�e CCPF 
model as a model for groundwater flow in a karst aqui-
fer, especially for t�e flow exc�ange between matrix and 
conduits, �as not been well studied. In addition, deter-
mination of t�e value of t�e exc�ange rate parameter is 
also an issue t�at needs attention.

Recently, Faulkner et al. (2009) developed a nu-
merical model to simulate groundwater flow and solute 
transport in a karst aquifer based on a dual-regional 
conceptual model. The karst aquifer is divided into two 
regions, t�e limestone matrix and t�e conduits. Ground-
water flow in t�e matrix is still assumed to satisfy Darcy’s 
law, but conduit flow is described by t�e Stokes equa-
tions. The renowned empirical Beavers-Josep� interface 
condition (Beavers & Josep� 1967) and its simplified 
version, t�e Beavers-Josep�-Saffman condition (Saffman 
1971), are used to model t�e flow exc�ange at t�e inter-
face between t�e matrix and t�e conduit. Faulkner et al. 
(2009) also conducted a sandbox experiment to simulate 
groundwater flow and solute transport in a karst aquifer 
wit� a single conduit. The experiment results matc� well 
wit� t�e Stokes-Darcy simulations. 

In t�is study, we will first introduce t�e CCPF mod-
el, mat�ematically investigate its well-posedness (mat�e-
matical term, means solution existence and uniqueness) 
and regularity, develop a numerical finite elementary 
met�od for a special case, and evaluate t�e numerical 
convergence of t�e model. The CCPF and SD numerical 
simulations will t�en be compared wit� t�e experimen-
tal results by Faulkner et al. (2009). 

INTRODUCTION
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Conventionally, �ydraulic interaction between t�e fis-
sured system and t�e conduit network �as been simu-
lated by employing t�ree types of modeling approac�es 
(Liedl et al. 2003; Birk et al. 2003; Faulkner et al. 2009). 
First, multiple sets of fractures may be coupled to eac� 
ot�er in order to represent t�e different �ydraulic prop-
erties of t�e fissured and t�e conduit system. Alterna-
tively, double-continuum or multi-continuum models 
may be applied w�ere t�e cross-flow between t�e flow 
systems depends on t�e corresponding pressure differ-
ences via linear exc�ange terms. As a t�ird approac�, 
discrete networks of flow pat�s may be coupled to a 
continuum in order to model t�e dualistic flow patterns 
in karst systems.

The last one of t�e t�ree approac�es is t�e most 
popular among �ydrologic studies, called t�e coupled 
continuum pipe flow model. As t�e name implies, t�is is 
a coupled system consisting of a continuum, t�e matrix, 
wit� a pipe flow conduit imbedded inside. It �as been 
used successfully to study groundwater flow in karst 
aquifers and t�e genesis of karst aquifers (e.g., Bauer 
et al. 2003; Liedl et al. 2003; Birk et al. 2003). In t�is sec-
tion, we will develop a t�ree-dimensional version of t�is 
model. 

For conduit flow, t�e disc�arge can be related to t�e 
�ead difference in t�e tube by applying t�e Darcy-Weis-
bac� equation (Bobok 1993):

 
(1)

w�ere τ is t�e tangential unit vector along t�e 1D pipe 
conduit, d is t�e pipe diameter,  is t�e av-
erage velocity, and g is t�e eart�’s gravitational accel-
eration. Here, Q is t�e total disc�arge in t�e pipe. The 
friction factor, λ, depends on t�e velocity in t�e pipe 
via t�e Reynolds number , wit� ν t�e kin-
ematic viscosity of water. For a low flow velocity, lami-
nar flow is assumed and t�e Hagen Poiseuille equation 
can be applied. The friction factor for laminar flow is 

calculated as . Plugging t�e above relations into 

(1), we �ave . 

Since , we �ave

 
(2)

The fissured matrix and t�e conduit system are cou-
pled at common nodes by a quasi-steady-state exc�ange 
term (Barenblatt et al. 1960),

 (3)

W�ere αex > 0 is t�e water mass exc�ange coefficient. This 
equation indicates t�at t�e process in t�e conduit is con-
trolled by groundwater flow in t�e fissured matrix. The 
exc�ange coefficient is t�e key parameter, into w�ic�, 
unfortunately, most of t�e uncertainties are lumped. A 
detailed discussion of t�e conventional wisdom in deter-
mining αex will be presented later.

In t�e steady-state case, we �ave t�e following linear 
system, w�ic� is essentially two coupled Poisson equa-
tions in different domains.

 

(4)

w�ere , f and g denote t�e external forces, and

Ωm;  Ωc denote t�e regions for t�e fissured continuum 
and pipe conduit, respectively.

CONTINUUM PIPE FLOW MODEL 

WELL-POSEDNESS AND REGULARITy

The time dependent version of equation (4) �as been used 
to study karst aquifer genesis (Bauer et al. 2000, 2003; 
Bauer et al. 2003). The model was originally used for cou-

pling non-linear Ric�ard’s equation and pipe flow, w�ic� 
studies variably saturated media (Macquarrie & Sudicky 
1996). The mat�ematical model is solved by t�e Carbon-
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ate Aquifer Void Evolution (CAVE) program (Clemens 
et al. 1996). CAVE solves t�e flow in t�e fissured matrix 
by a finite difference sc�eme using MODFLOW (Har-
baug� 2005) and t�e conduit flow by a non-linear finite 
difference discretization (The non-linearity only occurs 
for t�e turbulent case. Since we are only considering 
laminar flow in t�e conduit, a non-linear solver is not 
necessary). The coupling exc�ange condition is reac�ed 
by iteratively solving equations in t�e matrix and conduit 
regions until convergence. The exc�ange of fluid is only 
allowed at discrete nodal points. No rigorous mat�emati-
cal t�eory was presented t�erein to s�ow well-posedness 
or guarantee convergence.

Here, t�e problem is simplified. We study a station-
ary case wit� linear conduit flow. It is t�en wort�w�ile to 
systematically present t�e mat�ematical t�eory be�ind 
t�e model. We assume t�e following geometrical setting 
for our problem. The fissure continuum is assumed to 
occupy t�e unit square Ωm = (0,1) × (–1/2, 1/2)  R2 and 
t�e one dimensional conduit pipe lies in t�e middle 
Ωc = (0,1) × {0}, i.e., a �orizontal straig�t pipe in t�e 
middle of t�e unit square matrix. Then equation (4) be-
comes

           

(5)

w�ere δ(y) is t�e Dirac delta function in y. In addition, 
we use t�e following Diric�let boundary conditions for 
bot� domains.

 
(6)

w�ere gm and gc are given functions. We remark t�at we 
may also consider a t�ree dimensional fissured matrix 
coupled wit� two dimensional free flow plane or one 
dimensional free flow pipe. The well-posedness proof 
would remain t�e same, w�ile t�e regularity and numeri-
cal analysis could be treated in a very similar fas�ion, al-
t�oug� t�e results slig�tly differ.

In t�e following analysis, we only consider t�e �o-
mogeneous case, i.e., we assume t�at gm  0 and gc  0. 
The non-�omogeneous boundary case can be converted 
to t�e �omogeneous case t�roug� a standard proce-
dure. First, we formulate t�e variational form for equa-
tion (6). To t�is end, we define a bilinear from  on 

 as follows.

For h = (hm, hc) and v = (vm, vc) in ,

 7

We say t�at � ∈   is a weak solution of equation 
(6) if

 (8)

If we assume t�at ƒ h–1(Ωm) and g h–1(Ωc), t�en 
weak solution of (6) exists and is unique. We will prove 
t�at t�e bilinear form a(•,•) is continuous and coercive in 

. The existence and uniqueness t�en follow from Lax-
Milgram t�eorem. The continuity follows directly from 
t�e trace t�eorem. For h  ,

  

w�ic� implies t�e coercivity.

Let h = (hm, hc) be t�e weak solution of (6). As-

sume t�at  and . Then 

, w�ere . This can be 

easily proven. The fact t�at  is obvious. For,  

 by t�e trace t�eorem, we �ave

Thus . By equation (6) we 

conclude t�at .

BILL x. HU
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Now we construct finite element approximations for t�e 
weak solution of equation (6). Let Ωm

h and Ωc
h be a quasi-

uniform triangulation of Ωm and Ωc, respectively. We 
construct t�e conforming finite element spaces Hm� and 
Hc� as piecewise continuous quadratic function spaces 
of h0

1(Ωm) and h0
1(Ωc), respectively, w�ere h is t�e mes� 

size. The finite element approximation for t�e weak solu-
tion h of equation (6) is to seek hh=(hm

h , hc
h)∈hm

h × hc
h 

suc� t�at

 
(9)

By t�e regularity result and a standard argument for fi-
nite element approximations, we �ave t�e following error 
estimate. Equation (9) admits a unique solution hh=(hm

h , 

hc
h)∈hm

h × hc
h. Moreover, for , t�ere exists a con-

stant C(ε), w�ic� is independent of � suc� t�at

To study t�e convergence of t�e numerical solution, 
we set all parameters to one. We adjust t�e forcing f and 
g in matrix and conduit, respectively, suc� t�at t�e fol-
lowing solution is exact.

 

(10)

We �ave t�e following convergence rate as is sum-
marized in Tab. 1. The better-t�an-predicted convergence 
rate is because we �ave t�e edges of t�e elements in Ωm

h 
to lie exactly on Ωc

h, i.e., we 
do not �ave any of Ωc

h to in-
tersect t�e interior of t�e ele-
ments in Ωm

h . Furt�ermore, it 
is speculated t�at h �as piece-
wise �ig�er regularity.

The velocity determined 
from t�e CCPF system is 
used in t�e governing equa-
tion for t�e solute evolution 
in t�e matrix:

 
(11)

w�ere Cm denotes t�e solute concentration in ma-
trix and d is dispersion coefficient. 

INTRODUCTION OF STOKES AND DARCy MODEL

FINITE ELEMENT APPROxIMATIONS AND CONVERGENCE

Faulkner et al. (2009) developed a SD model to simulate 
groundwater flow and solute transport in a karst aquifer 
wit� a conduit in matrix. Here we would like to briefly in-
troduce t�e met�od for t�e completeness of t�e paper. If 
interested, t�e reader could find t�e detailed description 
of t�e met�od from Faulkner et al. (2009). 

The flow in t�e matrix ΩΩm is governed by t�e Darcy 
system

 in  Ωm, (12)

 
w�ere qm denotes t�e specific disc�arge, w�ic� can be 
expressed as qm = nvm, w�ere vm denotes t�e seepage 

Tab. 1: Convergence rate for steady state CCPf.

h || hc − hc
h ||0 || hm − hm

h ||0 | hc − hc
h |0 | hm − hm

h |0

2−3 3.047E-2 1.644E-2 7.888E-1 6.906E-2

2−4 3.907E-3 2.092E-3 2.025E-1 1.517E-2

2−5 4.915E-4 2.628E-4 5.096E-2 3.582E-3

2−6 6.150E-5 3.290E-5 1.276E-2 8.818E-4

2−7 7.694E-6 4.114E-6 3.191E-3 2.198E-4

rate of conv. 2.989 2.992 1.987 2.070

ExAMINING A COUPLED CONTINUUM PIPE-FLOW MODEL FOR GROUNDWATER FLOW AND SOLUTE TRANSPORT IN ...
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velocity and n t�e effective porosity, S t�e storage co-
efficient, K t�e �ydraulic conductivity tensor, and fm 
represents sink/source term. The �ydraulic �ead hm is 

defined by
 

, w�ere pm denotes t�e pressure,
 

ρ t�e water density, g t�e gravity acceleration, and z t�e 
position �ead.

By substituting t�e second equation in (12) into t�e 
first one, we obtain t�e equation t�at governs t�e c�ange 
of t�e �ydraulic �ead:

   in  Ωm (13)

The boundary conditions for (13) are t�e Diric�let 
boundary condition hm=h(x) along Γg, w�ere h(x) is 
known from measurements, and t�e �omogeneous Neu-
mann boundary condition (K∇hm) ⋅ n=0 along Γ0 t�at 
represents a no-flow boundary condition at t�e artificial 
boundary of t�e aquifer.

In t�e conduit domain, ΩΩc, t�e ot�er domain of t�e 
problem, as demonstrated by Faulkner et al. (2009), t�e 
Navier-Stokes equations govern t�e free flow,

   in  Ωc (14)

w�ere vc denotes t�e fluid velocity, 
T(v, p)=–pci+2νD(ν) t�e stress tensor, pc t�e kinetic fluid 
pressure, D(ν)=½(∇ν+(∇ν)T) t�e deformation tensor, ν 
t�e kinetic viscosity of t�e fluid, and fc a general body 
forcing term. If Re is small, t�e advective term (ν ⋅ ∇)ν is 
negligible and equation (14) could be simplified.

Faulkner et al. (2009) developed suitable bound-
ary conditions for t�e system. At t�e sink�ole and t�e 

spring, non�omogeneous Diric�let boundary conditions 
are applied to specify t�e inflow and outflow velocities, 
respectively. Specifically,

νc×n=0  and  νc ⋅ n=γsi(t)ηsi(x)=fsi on Γsi (15a)

νc×n=0  and  νc ⋅ n=γsp(t)ηsp(x)=fsp on Γsp (15b)

w�ere γsi, γsp, ηsi and ηsp are given functions defined 
at t�e spring, ΓΓsp, and sink�ole, ΓΓsi. These boundary data 
are obtained from field measurements. The rig�t column 
corresponds to t�e Diric�let normal velocity. The left 
column corresponds to t�e Diric�let tangential velocity 
because n×v×vc×n=vc–(vc ⋅ n)n.

In addition to t�e boundary conditions imposed 
along t�e boundaries of t�e matrix and conduit, t�e 
following interface boundary conditions are used by 
Faulkner et al. (2009) to couple t�e solutions in t�e two 
nonoverlapping yet neig�boring domains:

(16)

W�ere ΓΓcm denotes t�e conduit-matrix interface, 
τ represents t�e local tangent plane to ΓΓcm, ncm denotes 
t�e unit normal vector to ΓΓcm pointing from t�e conduit 
to t�e matrix, α denotes a constant and k represents t�e 
permeability, w�ic� �as t�e following relation wit� t�e 
�ydraulic conductivity, K=kg/v. It s�ould be noticed t�at 
k and K differ by a factor of a constant scalar for a cer-
tain type of fluid. Thus, all assumptions on K suc� as t�e 
symmetric positive definiteness also carry over to k. 

The velocity determined from t�e coupled Stokes-
Darcy system is used in t�e governing equation for t�e 
tracer evolution in t�e matrix, equation (11). 

COMPARISON BETWEEN MODELING SIMULATIONS WITH LABORATORy ExPERI-
MENTAL RESULTS

In our previous study (Faulkner et al. 2009), we used a 
laboratory analog experiment to simulate groundwater 
flow and solute transport in a karst aquifer wit� one con-
duit buried adjacent to t�e matrix. The experiment main-
ly focuses on t�e water and solute exc�anges between t�e 
matrix and conduit. The study results will be used as t�e 

benc�mark for numerical study. The experimental facil-
ity and procedure are described in Faulkner et al. (2009). 
Here, we just use t�e results to compare wit� t�e numeri-
cal simulations. 

Fig. 1 s�ows t�e experimental �ydraulic �ead dis-
tribution and simulation results by SD (Faulkner et al. 

BILL x. HU
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fig. 1: Experimental (top), 
Sd simulated (middle) and 
CCPf simulated (bottom) 
head distributions in the 
matrix, where experimen-
tal and Sd results are from 
faulkner et al. (2009), and 
CCPf results are new. The 
head unit is centimeter.

ExAMINING A COUPLED CONTINUUM PIPE-FLOW MODEL FOR GROUNDWATER FLOW AND SOLUTE TRANSPORT IN ...
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fig. 2: Experimental (left), Sd simulated (middle) and CCPf simulated (right) results for the solute concentration distribution in the 
matrix at various time instants; top to bottom: t=32.5s, t=62.5s, t=92.5s and t=122.5s, where experimental and Sd results are from 
faulkner et al. (2009), and CCPf results are new. The simulated concentration values change from 1.0, the deep purple, to 0.0, white.

2009) and CCPF models, respectively. The �ydraulic 
�eads from t�e laboratory measurements and simula-
tions by SD and CCPF at measurement points are listed 
in Tab. 2. From t�e Fig. 2 and Tab. 2, we can tell t�at t�e 
SD simulations are close to t�e experimental results; 
w�ile t�e CCPF modeling generally overestimates t�e 
�ydraulic �eads in t�e matrix, especially at t�e boundary 
between t�e matrix and t�e conduit.

Fig. 2 presents t�e experimental results of t�e dye 
distributions at several time slots and simulations at 

t�e same time slots by t�e two models. The SD simula-
tions are very similar to t�e experimental results, but 
t�e CCPF modeling results are quite different. First, t�e 
pipe-flow modeling underestimates dye front move-
ment in t�e conduit as well as dye exc�ange at t�e front 
between t�e two domains. Second, t�e modeled plume 
distribution in t�e matrix is convex s�aped and does not 
capture c�aracteristics of t�e plume distribution in t�e 
experiment (a broad U-s�aped plume wit� two �umps at 
eit�er end caused by end point interface). 

BILL x. HU
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SENSITIVITy STUDy ON αex AND α

As is pointed out and repeatedly verified in previous 
studies (Bauer et al. 2000, 2003; Birk et al. 2003), cou-
pled continuum pipe flow models are sensitive to t�e 
c�oice of t�e first order exc�ange parameter αex. The 
breakt�roug� time of conduit genesis may vary among 

several magnitudes as αex varies in t�e range of �ydraulic 
conductivity. 

In t�is study, we use t�e disc�arge and disc�arge 
boundary condition for t�e CCPF. For t�is pair of 
boundary condition, t�e CCPF model performs rela-

tively well. quantities suc� as t�e exc�ange 
of fluid along t�e interface and t�e dis-
c�arge in t�e conduit are sensitive to t�e 
parameter c�oice. In t�e laboratory ex-
periment, t�e �ydraulic conductivity of t�e 
glass beads is, K≈7.4×10–4 (m/s). So we set 
αex in t�e range of [10–1, 10–4] (m/s). It is 
observable from Fig. 3 t�at t�e exc�ange 
flow is sensitive to t�e c�oice of αex. For a 
comparison wit� t�e SD system, t�e results 
are summarized in Fig. 4, w�ere αex rang-
es between 10–4 to 10–2 (m/s). From t�e 
results, we see t�at, for conventionally sug-
gested small αex, t�e conduit flow is almost 

Tab. 2: Comparison of experimental hydraulic head results with Sd and CCPf simulations at measurement points. 

Point location (cm)
(x, y)

Lab results 
(cm)

SD Model 
(cm)

Diff Between SD 
and Lab (cm)

CCPF 
Model (cm)

Diff Between CCPF 
and Lab (cm)

1 (55.3,13.2) 23.09 23.10  0.01 23.10 0.01
2 (47.0,6.5) 25.75 28.46  2.71 27.39 1.64
3 (47.0,13.2) 25.48 26.39  0.91 26.32 0.84
4 (47.0,19.9) 25.21 25.71  0.50 25.85 0.64
5 (37.8,6.5) 30.06 32.12  2.06 32.70 2.64
6 (37.8,13.2) 29.26 30.03  0.77 30.61 1.35
7 (37.8,19.9) 29.61 29.05    -0.56 29.63 0.02
8 (28.6,6.5) 32.29 32.96  0.67 35.14 2.85
9 (28.6,13.2) 30.95 31.58  0.63 32.94 1.99

10 (28.6,19.9) 30.15 30.81  0.66 31.84 1.69
11 (19.4,6.5) 32.67 33.03  0.36 35.15  2.48
12 (19.4,13.2) 31.13 31.85  0.72 33.17  2.04
13 (19.4,19.9) 29.75 31.26  1.51 32.24  2.49
14 (10.2,6.5) 31.17 31.81  0.64 32.44  1.27
15 (10.2,13.2) 30.56 31.02  0.46 31.54  0.98
16 (10.2,19.9) 30.11 30.73  0.62 31.14  1.03
17 (2.5,13.2) 30.20 30.21  0.01 30.21  0.01

Summation of errors T  12.68  23.97
 Summation of absolute errors  13.80  23.97

fig. 3: variation of normal velocity along the in-
terface as αex in the CCPf simulation.
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fig. 4: Comparison between Stokes-darcy (green) and CCPf (blue) simulation results of exchange flow (left) along interface and con-
duit discharge (right) under various αex values: a) αex =10-4 m/s; b) αex =10-3 m/s; and c) αex =10-4 m/s.  
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fig. 5: Sensitivity study on α used in beavers-joseph interface condition: variations of normal velocity (left) and conduit discharge 
(right) with α change from 0.2 to 2.0.

uniformly linear and interface fluid exc�ange is almost 
a constant, w�ic� is far from t�e SD model results. The 
SD model can be regarded as t�e “correct model” since 
its validity is justified in Faulkner et al. (2009). The �ig� 
sensitivity at small αex value can be understood in t�e 
following way. In t�e case of αe = 0.0 m/s, Darcy’s flow 
and pipe flow are decoupled and �ence t�ere s�ould be 
a non-zero �ead difference in general. The sensitivity 
equation wit� respect to αex (w�ic� can be derived by 
formally differentiating t�e CCPF system wit� respect 
to α) takes t�e same form as CCPF but wit� t�e �ead 
difference serving as t�e forcing/source term. Since t�e 
�ydraulic conductivity and αex are small, t�e response 
(t�e sensitivity) is expected to be large.

On t�e ot�er �and, one may speculate t�at t�e 
Stokes-Darcy system is sensitive to t�e c�oice of α in t�e 
Beavers-Josep� interface condition as well. However, t�is 
is not t�e case. From Fig. 5, we do not observe a visible 
difference if we vary t�e α in t�e Stokes-Darcy model ac-
cording to t�e range suggested by Beavers and Josep� 
(Beavers & Josep� 1967). Study results indicate t�at t�e α 
in t�e Stokes-Darcy model wit� Diric�let boundary con-
ditions is a “dummy” parameter, and simulation results 
are very insensitive to its variation. The parameter value, 
in practice, can be assumed to be “known”. 

SUMMARy AND CONCLUSIONS

This study �as examined a currently used modeling ap-
proac�, CCPF, for groundwater flow and solute trans-
port in a karst aquifer wit� conduits. We �ave examined 
w�et�er t�e modeling system is mat�ematically well-
posedness, and t�en �ave developed a finite numerical 
met�od to solve t�e mat�ematical model and studied 
t�e convergence of t�e numerical met�od. The modeling 
focuses on water and solute exc�anges t�roug� t�e ma-
trix and conduit domain interface. To study t�e accuracy 
of t�e modeling approac�es, we compare t�e CCPF and 
SD modeling simulations wit� laboratory experiment 
results. We also conduct a sensitivity study on t�e two 
parameters, αex and α, used in t�e CCPF and SD models, 

respectively. Based on t�ese studies, we make t�e follow-
ing conclusions: 

1. The continuum pipe-flow is mat�ematically well-
posed and regularized. The finite elementary approxima-
tions based on t�e mat�ematical model are numerically 
converged. 

2. In comparison wit� t�e laboratory experimental 
results, t�e SD model can reproduce t�e experimental 
results of �ydraulic �ead distribution and plume evolu-
tion. The CCPF model overestimates t�e �ydraulic �eads 
along t�e interface between matrix and conduit, un-
derestimates solute transport in conduits, and does not 
completely capture t�e matrix plume distribution.
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3. In t�e CCPF model, t�ere is a parameter, mass 
exc�ange rate, αex, to relate t�e water exc�ange between 
t�e matrix and conduit domains. The �ydraulic �ead and 
solute distributions are very sensitive to t�e variation of 
t�e parameter. This parameter is very difficult to obtain. 
It is normally obtained t�roug� curve fitting using field 
experiments. In t�e SD model, t�ere is also a parameter 
α in t�e Beavers-Josep� interface condition. However, 

t�e calculated �ydraulic �ead and solute distributions 
in t�e system are not sensitive to t�e parameter varia-
tion, and so α is a dummy parameter. Therefore, t�e SD 
model does not require a parameter to describe t�e mass 
exc�ange between t�e two domains. The Stokes-Darcy 
modeling met�od can provide an independent calcula-
tion met�od to estimate t�e αex used in CCPF.
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